\/ — Web Site: www.parallax.com Office: (916) 624-8333
z Forums: forums.parallax.com Fax: (916) 624-8003
Z\ N Sales: sales@parallax.com Sales: (888) 512-1024

Technical: support@parallax.com Tech Support: (888) 997-8267

TSL1401-DB (#28317): Linescan Camera Module

Product Overview

General Description

The TSL1401-DB is a daughterboard that provides a TAOS TSL1401R 128-pixel linear array sensor and a
lens. It is designed to plug into either the MoBoStamp-pe (p/n 28300), the MoBoProp (p/n 28303), or the
DB-Expander (p/n 28325). This module will allow its host system to “see” in one dimension. Two-
dimensional vision can also be achieved by moving either the subject or the sensor in a direction
perpendicular to the sensor axis.

Features

Provides vision in one dimension with 128-pixel resolution.

Three-line serial interface with analog intensity output for each pixel.

Included 7.9mm lens provides a field of view equal to subject distance.
Plug-compatible with Parallax motherboards.

Coprocessor driver firmware for the MoBoStamp-pe available for download.

Can be interfaced directly to a BASIC Stamp for some functions.

Onboard accessory socket for strobe output or 50/60Hz fluorescent light sync input.
Runs from 3.3V or 5V supplies. (5V is needed for the optional LED strobe attachment.)

Applications

Measure height, width, diameter, thickness.
Locate objects, lines, edges, gaps, holes.
Count items; measure conveyor coverage.
Determine volume, shape, orientation.
Read simple barcodes.

Learn the principles of machine vision.

What’s Included

TSL1401-DB with lens.

What You Need to Provide

Parallax motherboard, or DB-Expander with BASIC Stamp and carrier board (such as the BOE).

© Parallax, Inc. « TSL1401-DB (2007.07.07) Page 1 of 52

Introduction

What the Module Sees

The TSL1401R chip is a linear array (linescan) sensor. It consists of a single row of 128 photodetectors.
The TSL1401-DB includes a lens to form images on the sensor array. What results is somewhat like

peering through the narrow crack of a partially opened door to see a thin slice of what lies behind it. The
illustration below helps to explain the concept:

First Pixel
Last Pixel

The output from each observed pixel is an analog voltage proportional to light intensity. The analog
intensity curve corresponding to the image above would look something like this:

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 2 of 52

Here, you can see not only the edges of the bagel and the hole in the middle, but also the intensity
variations caused by the seeds and herbs on its surface.

The overall width (field of view) seen by the TSL1401-DB, using the included 7.9mm lens, is
approximately equal to the subject distance. So, for example, if the module is 1 meter away from the
subject, it will see a linear slice of the subject that’s 1 meter wide and 1/128" of a meter high.

Focusing the TSL1401-DB’s lens is accomplished by screwing it in or out. When screwed almost all the
way in, distant subjects will be in focus. To focus on closer subjects, the lens needs to be screwed out a
bit. Once proper focus is achieved, it may be necessary to secure the lens from vibration by wrapping
tape around the lens bezel and lens holder barrel. If the lens is screwed in far enough, a small O-ring
snapped into the crevice between the lens bezel and lens holder barrel will serve the same purpose.

Note: The use of a thread locker (e.g. Loc-Tite) or any cyanoacrylic adhesive (e.g. Super Glue) is not
recommended near lens elements, as the fumes can destroy any optical coatings that may be
present.

If you are using the TSL1401-DB with a Parallax MoBoStamp-pe, you can use the PC-hosted monitor
program, described later in this document, as an aid to focusing.

Interface and Basic Operation

Refer to the schematic on the last page of this document for the TSL1401-DB’s pinout, and to TAOS’s
TSL1401R-LF datasheet (available from www.tasoinc.com) for the sensor chip’s particulars. For normal
operation (i.e. without external strobing or syncing), there are only three signals that need to be
considered: SI (digital output to the sensor: begins a scan/exposure), CLK (digital output to the sensor:
latches SI and clocks the pixels out), and AO (analog pixel input from the sensor: 0 — Vdd, or tri-stated if
beyond pixel 128). The TSL1401 datasheet describes these signals in detail, so that description won't be
repeated here, except as it relates to the BASIC Stamp.

If you are using the TSL1401-DB with Parallax’s DB-Expander (p/n 28325), the pin correspondences are
as follows:

TSL1401 Pin | DB-Expander Pin
AO A
SI B
CLK C

The TSL1401 is a /ight-integrating device. It's a bit like photographic film in that regard: the longer you
expose it, the brighter the resulting image. Also, like film, it can saturate, such that if exposed too long,
everything — even the darkest subjects — will look completely white. The exposure time (also called
“integration time”) is the time interval between SI pulses. (Well, actually, the exposure doesn't really
begin until 18 clocks after SI; but it's often convenient to ignore that detail if those clocks occur quickly
enough.) During each exposure, all the pixels need to be clocked out of the device to prepare it for the
next exposure. However, the exposure interval for each pixel begins and ends with the SI pulse, not with
the moment it's clocked out, as with some other sensors. Therefore, all the pixels get exposed
simultaneously, and the acquired image represents the same interval in time for each of them.

There are two ways to acquire images with the TSL1401: continuous and one-shot. In continuous

imaging, the SI pulses occur in a steady stream, with 129 or more pixel clocks in between, during each
exposure interval. To acquire an image, you need to wait for the next SI pulse time before clocking out

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 3 of 52

the pixels that constitute the image. These pixels will represent the light received during the previous
exposure interval. Waveforms illustrating this method are shown below:

Clock out scan n-1 Clock out scan n
Integrate scan n Integrate Scan n+1
| 1 1 1
CLK
1 2345678910 129 1 2345678910 129
Tri- Tri- Tri-
A0 Stated Stated Stated

In one-shot imaging, the TSL1401 is left idle until it's time to snap a picture. Then SI clocked in, and 128
pixels are rapidly clocked out and discarded. Then you simply wait until the desired exposure time (since
the SI pulse) has elapsed and pulse SI again. At this point, you can clock out the pixels resulting from
the timed exposure. Here is a sample waveform:

Clock out garbage

IDLE Integrate scan Clock out scan IDLE
S| 1 1
[N Gu— O 1111111 o,
1 129 1 2345678910 129

In all the discussion that follows, we will be using one-shot imaging.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 4 of 52

Operation with the BASIC Stamp

This section explains how to use the TSL1401-DB directly with a BASIC Stamp. If you have the
MoBoStamp-pe BASIC Stamp 2pe motherboard, you can skip this section and proceed to the section
titled “Operation with the MoBoStamp-pe”.

Connection

The following illustration shows how to connect the TSL1401-DB to a BASIC Stamp, using Parallax’s
Board of Education and a DB-Expander board:

Oooooodd
ooooodod
Oooooodd
Oooooodd
OooOoooOodd

|
|
|
|

oooad

The signal pinouts and port usage shown above are consistent with the examples to follow in this section.
You can also use the DB-Extension Cable (p/n 500-28301) to separate the TSL1401-DB from the DB-
Expander board if you need to.

Image Acquisition

The output of the TSL1401 is an analog signal, but the BASIC Stamp does not have analog input
capability (except via RCTIME, which isn't fast enough to read 128 pixels). How, then, is it possible to use
this device with a BASIC Stamp? We do it by connecting the AO signal directly to one of the Stamp’s
digital inputs. When done this way, the BASIC Stamp will threshold the analog input. Anything over about
2 volts will read as a 1; anything under, as a 0. By treating the signal this way, it's possible to input a
string of 1s and Os that represent light and dark portions of the “scene” being recorded. A complete
scan, then, would require 128 bits of data (i.e. 16 bytes, or 8 words), which the BASIC Stamp can
accommodate handily.

Once these bits have been read in, it's possible to analyze “features” of the scene by looking for groups
of light and dark pixels. For example, if you wanted to measure the width of a light object against a dark
background, you could read in the image, then count the number of “1” bits in the data. Likewise, if you
wanted sense the edge of a “web” (e.g. paper in a paper mill) to keep the web on track, you would look
for the first occurrence of a light or dark pixel in each scan.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 5 of 52

The following PBASIC code fragment (taken from the complete program template shown later in this
section) can be used to read a single scan from the TSL1401-DB. It consists of five lines of code, which
are shown and discussed individually:

SHIFTOUT SI, CLK, 0, [1\1]

SI and CLK are defined in the larger program’s preamble as PINs and connect to like-named ports on
the TSL1401-DB. This statement clocks out SI as a single bit of synchronous serial data, which starts a
new exposure interval.

PWM CLK, 128, 1

We want to clock through all 128 pixels as fast as possible, since we're just timing an exposure here, not
reading data. The PWM statement fits the bill perfectly. The 128 in this statement is the duty cycle
(50%), not the number of pulses. The number of pulses is given by the 1, which represents the length of
time to output the PWM signal. For the BS2, this is nominally 1mS. (Actually it's more like 1.2mS and
consists of about 150 cycles.)

PULSOUT SI, exp >> 1 MIN 1016 - 1016

This statement sets the exposure time. exp can be either a constant or a variable and represents the
length of the exposure in microseconds. The reason for using PULSOUT instead of PAUSE, say, is that
the timing resolution is so much finer. And the reason for sending the pulse on SI is that it's not used for
anything else durng this time, and, so long as we don't clock the pulse with CLK the sensor chip is
unaffected. The value subtracted from the pulse width (1016) represents the timing overhead from the
PBASIC program, minus the start-of-integration delay to the 18" clock in the PWM statement. This
means that the minimum exposure time will be about 2.032mS.

Note: Timings for BASIC Stamps other than the BS2 will vary, and the value subtracted will need to
be adjusted accordingly.

SHIFTOUT SI, CLK, 0, [1\1]

This clocks out the SI pulse again to end the exposure and begin actual data readout.

SHIFTIN AO, CLK, LSBPRE, [pdata(0)\16, pdata(l)\1l6, pdata(2)\16, pdata(3)\16]
SHIFTIN AO, CLK, LSBPRE, [pdata(4)\16, pdata(5)\16, pdata(6)\16, pdata(7)\16]

These two statements read 128 bits of thresholded pixel data from the AO pin into an eight-position
word array, declared pdata word(8), least-signficant bits first. Doing it “inline” like this is faster than
doing it in a loop.

Here are the waveforms from the above acquisition routine, with the various sections annotated:

IDLE SHIFTOl’ll| PWMOUT | PULSOUT SHIFTOM SHIFTIN16 x 8 IDLE
SI I [!
CLK LA ATAA
1 129150 1 2345678910 129
[| Thresholded Data
Tri-
Stated

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 6 of 52

You can use DEBUG to display the acquired pixels, as in the following program fragment. (A somewhat
fancier version is given in the complete program later in this section.)

FOR 1 = 0 TO 7
DEBUG BIN16 pdata (i) REV 16
NEXT

The variable i can be declared as a NIBble. The reason for the REV is because the data were read in
LSB first, but DEBUG’s BIN formatter displays data MSB-first. So we need to reverse the order of the
bits to get an accurate picture of the pixel order. One might well ask why we didn't just read the data in
MSB first to begin with. After all, SHIFTIN, can do that just as easily. The answer lies in the image
analysis routines to follow.

Image Analysis

Analyzing a linescan image to extract useful information from it involves two major operations: pixel
counting, and pixel and edge location. The PBASIC subroutines that perform these operations treat the
original array of eight words as an array of 128 bits, each bit corresponding to a single pixel. Bit 0 is the
first pixel read; bit 127, the last. (This mapping is why the pixels needed to be read in LSB first.) Here's
how the word and bit arrays are declared:

pdata VAR Word (8)
pixels VAR pdata.BITO

Counting light or dark pixels within a given range is simple. Here’s the code that does it:

CountPix:
cnt = 0 'Initialize count.
IF (lptr <= rptr AND rptr <= 127) THEN 'Valid range?
FOR i = lptr TO rptr ' Yes: Loop over desired range.
IF (pixels (i) = which) THEN cnt = cnt + 1 ' Add to count when pixel matches.
NEXT
ENDIF
RETURN

cnt can be declared as a byte, since it will never exceed 128. Iptr and rptr are also bytes that can range
from 0 to 127, inclusive. They indicate the range over which the counting occurs. which is a bit variable
that indicates whether to count dark pixels (0) or light pixels (1). Counting pixels is handy for computing
an object’s area — either in one scan, or cumulatively over multiple scans for two-dimensional objects
passing under the camera on a conveyor.

Locating the first occurrence of a dark or light pixel within a given range isn't much harder:
FindPix:

IF (found = 1 AND lptr <= rptr AND rptr <= 127) THEN
'Still looking & within bounds?

IF (dir = FWD) THEN ' Yes: Search left-to-right?
FOR lptr = lptr TO rptr ! Yes: Loop forward.
IF (pixels(lptr) = which) THEN RETURN ' Return on match.
NEXT
ELSE
FOR rptr = rptr TO lptr ! No: Loop backward.
IF (pixels(rptr) = which) THEN RETURN ' Return on match.
NEXT
ENDIF
ENDIF

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 7 of 52

found = 0 'Didn't look or nothing found.
RETURN 'Return.

found is a bit variable that should be initialized to 1 for the search to commence and indicates when the
subroutine returns whether the desired pixel has been found (0 = no; 1 = yes). Iptr and rptr have the
same meaning as in the counting routine, except that one or the other can get moved to the location of
the found pixel. Combined with the cumulative effect that found has, this make it easier to perform a
whole string of searches. dir is a bit variable that indicates which end of the (Iptr, rptr) range to start
the search from. You can predefine the constants FWD (= 0, “left_to_right”) and BKWD (= 1, “right-to-
left”) to assign to dir to make your programs more readable. which, as with the counting routine,
indicates what kind of pixel to look for. You can predefine constants for which as well (DRK = 0; BRT =
1) for readability.

When FindPix returns, found will indicate whether the desired pixel was located, and either Iptr (if dir
= FWD) or rptr (if dir = BKWD) will point to the found pixel location.

Sometimes, it's necessary to locate an edge instead of just a pixel. A Jight edge, for example is one that
begins with a dark pixel, then transisitions to a light one. The FindPix routine can be used to find edges,
too, by looking for the first pixel opposite of the edge you're seeking, then the next pixel after that that
matches the edge value. The routine to do it is:

FindEdge:

which = 1 - which 'Look for opposite kind of pixel first.
GOSUB FindPix

which = 1 - which 'THEN look for desired pixel.

GOSUB FindPix

RETURN

Locating pixels and edges is handy for finding objects in a field of view and measuring their “extents”. An
object’s extent includes its outside boundaries and everything in between, regardless of pixel intensity.
For example, in the bagel illustration, the bagel’s extent would include the hole, while its area (obtained
by counting bright pixels) would not.

Here is a complete program which incorporates all the routines described above (and then some). It
acquires images and locates bright objects, computing both their extents and areas. You can also use it
as a template for your own programs.

Fil@scocao TSL1401 scan.bs2

Purpose... Image capture and processing demo using the TSL1401-DB
Author.... Phil Pilgrim, Bueno Systems, Inc.

E-mail....

Started... 11 July 2007

Updated. ..

{SSTAMP BS2}
{SPBASIC 2.5}

' [Program Description]J--—--------------"—-"-"-"—"-"—"—"—\—"—\—"—~—"—~—\—~—~\—"—~—~—~—\—\—~\—\—~———
This program demonstrates image capture and processing using the

' TSL1401-DB (Parallax p/n 28317). It continuously acquires and displays
' images from the TSL1401R sensor chip. It then locates both left and right

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 8 of 52

' bright edges, displayin
' computes both the area

ao PIN O

si PIN 1

clk PIN 2

' [Constants]-----
DRK CON O

BRT CON 1

FWD CON O

BKWD CON 1

' [Variables]-----
VariableName VAR B
pdata VAR Word (8)
pixels VAR pdata.BITO
exp VAR Word

lptr VAR Byte

rptr VAR Byte

i VAR Byte

cnt VAR Byte

which VAR Bit

dir VAR Bit

found VAR Bit

V'oe——— [Program Code]--
' NOTE: This code assumes
! regardless of the
! may not do this,
exp = 8333

DEBUG HOME

GOSUB DispHdr

DO
GOSUB GetPix
DEBUG CRSRXY,
GOSUB DispPix
lptr = 0 rptr =

0, 2
127 g

GOSUB FindEdge

dir = BKWD

GOSUB FindEdge

DEBUG CLREOL

IF found THEN
DEBUG CRSRX, (lptr -
DEBUG CRSRX, rptr, "|
GOSUB CountPix
DEBUG CR, CR,

" Extent = ",

ELSE
DEBUG

ENDIF

"Area =
DEC

CR, CR, "No obj

© Parallax, Inc. + TSL1401-DB (

g them graphically using DEBUG. Finally it
and extent of the object found.

'TSL1401R's analog output
'TSL1401R's SI pin.
'TSL1401R's CLK pin.

(threhsolded by Stamp) .

'Value
'Value
'Value
'Value

assignd to "which" for dark pixels.
assigned to "which" for bright pixels.
assigned to "dir" for left-to-right search.
assigned to "dir" for right-to-left search.

yte ' What is variable for?

'Pixel data, as acquired LSB first from sensor.
'128-bit pixel array mapped onto pdata.

'Exposure (integration) time in 2uSec units.

'Left pixel pointer for count and find operations.
'Right pixel pointer for count and find operations.
'General-purpose index.

'Result of pixel-count routine.

'Indicates seeking DRK or BRT pixels/edges.
'Indicates direction of search (FWD or BKWD) .
'Indicates pixels found (= 1), or not found (= 0).

that DEBUG will wrap after 128 characters,
DEBUG window width. Later versions of DEBUG
and you will have to add CRs where needed.
'Set exposure time to 8333uSec (1/120th sec).

'Go to home position on DEBUG screen.
'Display the pixel location header.

'Begin the scan-and-process loop.

'Obtain a pixel scan.

'Move to column 0, row 2.

'Display the pixels here.

which = BRT dir = FWD found = 1
'Initialize parameters for find.

'Find first dark-to-light edge going L->R.
'Switch directions.

'Find first dark-to-light
'Clear the next line.
'Both edges found?

edge going L<-R.

1y, " " 'Yes: Display left edge.
" ! Display right edge.
! Compute area (light pixel count).
", DEC cnt,' Display area
rptr - lptr + 1, CLREOL '... and extent of object.
'No: Display failure message.

ect found.", CLREOL

2007.07.07)

Page 9 of 52

' Acquire 128 thresholded pixels from sensor chip.
' exp is the exposure time in microseconds.

GetPix:
SHIFTOUT si, clk, 0, [1\1] 'Clock out the SI pulse.
PWM clk, 128, 1 'Rapidly send 150 or so CLKs.
PULSOUT si, exp >> 1 MIN 1016 - 1016 'Wait for remaining integration time.
SHIFTOUT si, clk, 0, [1\1] 'Clock out another SI pulse.

'Read 8 words (128 bits) of data.
SHIFTIN ao, clk, LSBPRE, [pdata(0)\16, pdata(l)\16, pdata(2)\16, pdata(3)\16]
SHIFTIN ao, clk, LSBPRE, [pdata(4)\16, pdata(5)\16, pdata(6)\16, pdata(7)\16]
RETURN

' Display a header to aid in identifying pixel positions.

DispHdr:

FOR 1 = 0 TO 12 'Display tens digits.
DEBUG DEC i DIG O
IF 1 < 12 THEN DEBUG " " ELSE DEBUG CR

NEXT

FOR 1 = 0 TO 127 'Display ones digits.
DEBUG DEC i // 10

NEXT

RETURN

Display 128 pixels: light pixels as "1"; dark, as " ".
DispPix:

FOR 1 = 0 TO 127

IF pixels (i) THEN DEBUG "1" ELSE DEBUG "."
NEXT
RETURN

Find the first edge within the range lptr through rptr, in the direction
given by dir and of the type indicated by which (0 = light-to-dark;
' 1 = dark-to-light).

FindEdge:
which = 1 - which 'Look for opposite kind of pixel first.
GOSUB FindPix
which = 1 - which 'Then look for desired pixel,

' Dby falling through to FindPix.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 10 of 52

' Find the first pixel within the range lptr through rptr, in the direction
' given by dir and of the type indicated by which (0 = dark; 1 = light).

FindPix:

IF (found = 1 AND lptr <= rptr AND rptr <= 127) THEN
'Still looking & within bounds?

IF (dir = FWD) THEN ' Yes: Search left-to-right?
FOR lptr = lptr TO rptr ! Yes: Loop forward.
IF (pixels(lptr) = which) THEN RETURN ' Return on match.
NEXT
ELSE
FOR rptr = rptr TO lptr ! No: Loop backward.
IF (pixels(rptr) = which) THEN RETURN ' Return on match.
NEXT
ENDIF
ENDIF
found = 0 'Didn't look or nothing found.
RETURN 'Return.
Voe———— [CountPix] ———=—=——=—————— e

' Count pixels within the range lptr through rptr, of the type indicated by
' which (0 = dark; 1 = light).

CountPix:
cnt = 0 'Initialize count.
IF (lptr <= rptr AND rptr <= 127) THEN 'Valid range?
FOR i = lptr TO rptr ' Yes: Loop over desired range.
IF (pixels (i) = which) THEN cnt = cnt + 1 ' Add to count when pixel matches.
NEXT
ENDIF
RETURN

Pseudo-analog Pixel Acquisition

Even though pixels acquired by the BASIC Stamp are thresholded and converted to single bits, it's still
possible to obtain a picture of each pixel’s analog value — at least for static subjects that don’t move. The
voltage output from any given pixel in the TSL1401R can be expressed as follows:

Output voltage = k x LightIntensity x IntegrationTime

Where k is a constant. At the two-volt threshold level, this can be rewritten:

2 = k x LightIntensity x IntegrationTime
What we want this formula to answer is this: For a given light intensity to produce an output at the two-
volt threshold, how long does the integration time have to be? Solving the above equation gives us our
answer:

IntegrationTime = 2 / (k x LightIntensity)
This means that if we want all the pixels whose light intensity is at or above a certain level to read as
ones, all we have to do is integrate for a time /inversely proportional to that intensity level, and those
pixels will read as ones after thresholding. By iterating over a range of intensity levels and displaying

each line of pixels one above the other, we can obtain an analog bar graph of intensity levels. Here's the
code snippet that does it. It can be plugged into the main code template shown above:

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 11 of 52

inten VAR cnt

DEBUG HOME 'Go to home position on DEBUG screen.

GOSUB DispHdr 'Display the pixel location header.

FOR inten = 32 TO 8 'Cycle through intensities in reverse.
exp = 32000 / inten * 8 'Compute exposure time as inverse of intensity.
GOSUB GetPix 'Acquire the binary pixels.
GOSUB DispPix 'Display them.

NEXT 'Continue with next lower intensity level.

END

Here’s what the output looks like when viewing a bagel lighted from the front:

Debug Terminal #1 -0l =l

Com Port: Baud Rate: Parity: D ata Bits: Flow Contral: @ 1% [DTR [~ RTS
ICDM‘I 'l ISBDD Vl INone 'l IE 'l Ifo 'l & R @ DSR @ CTS

S-11111111.
2111111111,
- 2111111111,
o o o dbdbdLILILIL S1111111111...111.

211.1111111.. .-.11111111111...111.

..11111111111111.11111111111111111111..
21111111111111111111111..111 211111111111111111111111111.11
21111111111111111111111111111. 2111111111111111111111111111111.
..111111111111111111111111111111 2111111111111111111111111111111111.
2111111111111111111111111111111111 .-.11111111111111111111111111111111111..

B .- 211111111111111111111111111111111111. 21111111111111111111111111111111111111.
1.. ..1111111....1111111111111111111111111111111311111. 2111
111. .. 11. .-11
111.1.1113111
11
11
111111111111111111111111111311311
11

Macros...l Pausze | Clear | Cloze | [~ Echo OF

You can see where the hole is, as well as the outside edges. However, this also illustrates a couple pitfalls
of front lighting: specular reflection (glare) from the black background surface (i.e. black not being all
that black), and rounded-off edges. Proper lighting techniques encompass an entire subject area of their
own. The last chapter of this document links to various resources on the internet that cover this
important topic.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 12 of 52

Operation with the MoBoStamp-pe

The TSL1401-DB is designed to plug into the MoBoStamp-pe. Though it will work in either socket, it is
recommended that socket “B” be used in order to make socket “A” available for interface-type
daughterboards requiring access to Vin. In all the examples included here, socket "B" is assumed (and
sometimes required). Here's a photo of the TSL1401-DB plugged into the MoBoStamp-pe, socket “B":

Loading the TSL1401 Driver Firmware

Before plugging in the TSL1401-DB, you will first want to load the firmware driver for it into the
coprocessor associated with socket "B". Be sure you've downloaded the program “LoadAVR.exe"” from the
Parallax website, as well as the hex file for the TSL1401 driver, “TSL1401DB01.hex”. Connect your
MoBoStamp-pe to the PC's USB port, and then run LoadAVR.exe. Select “TSL1401DB01.hex" as the file to
upload and socket “"B” as the destination. Then click “Upload”. Once the file has uploaded successfully,
you can plug the TSL1401-DB into its socket.

TSL1401-DB Monitor Program

There is a Windows PC host program that will let you see what the TSL1401-DB sees in real time. It's
called "TSL1401_monitor.exe”, and it can be downloaded for free from the Parallax website. Just copy it
to the directory of your choice.

With the MoBoStamp-pe/TSL1401-DB (the “camera”) connected to your PC's USB port, start up the
monitor program. After it makes a connection, it will upload its own PBASIC code, which replaces any
program currently in memory. Then you should see something like what appears on the next page.
Starting from the top, here are some points of interest in the display, some of which will be discussed in
more detail later:

e Scan Window: Every scan from the camera gets appended to this image, from right to left,
circulating back to the left edge when the screen is filled. By slowly rotating the camera on the
motherboard’s short axis, you can obtain a two-dimensional “scene”. The bottom pixels in this
window correspond to the leftmost pixels obtained in each scan.

e Trigger/Sync Control: Scans can be free-running, triggered, or gated. Triggering and gating
are controlled by Pin 3, which is a BS2pe port common to both daughterboards. When triggering
is set, a high-to-low edge on Pin 3 will cause a single scan to be acquired. When gating is set,
scans will be obtained continuously while Pin 3 is low. Using the “Ext. Sync” button, scans can
also be synchronized to an external source. The signal for this is obtained from the onboard 6-pin

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 13 of 52

mezzanine connector. The LightSYNC-DBM (p/n 283xx) plugs into this connector and provides a
signal synchronized to the 50/60Hz variations in light level from fluorescent lamps. This makes
the camera immune to these variations by starting all exposures at the same point on the
50/60Hz cycle. When syncing is used in conjunction with triggering or gating, the trigger/gate
condition must be met first, then the sync pulse must be received.

e Acquisition Control: You can start and stop scanning with these controls or obtain scans one
at a time.

T5L1401-DE Monitor

I |Triggered| Gated I Ext. Synel] I Single I

| " —

Thresheld: Hysztereziz: FiIter: Eempere:
Extreme = ! Value = between and [t equalz Code |

e Exposure Controls: These set the exposure type and time. Exposure times can be either fixed
or automatic. When set to fixed, you can set the actual time using the numerical control. When
set to automatic, exposure time is constantly adjusted to maintain the peak pixel value between
certain bounds. In this case, the numerical boxes show the actual exposure time for any given
exposure.

e Lighting Controls: When used with the optional StrobeLED-DBM board (p/n 283xx), which
plugs into the 6-pin mezzanine socket, these controls adjust the type and timing of the light

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 14 of 52

output from the LED. Types are “Off”, “"Normal”, and “Strobed”. Normal mode means that the
LED is on for the duration of each exposure at a brightness level that can be set in the numerical
window. In strobed mode, the brightness level is fixed at maximum brightness, with the duration
being the adjustable factor.

e Scope Window: This window shows the analog output of each pixel in real time. The horizontal
magenta lines represent high and low thresholds for binary pixel acquisition, similar to the BS2
acquisition discussed in the previous section, but controllable. In normal comparator-style
acquisition, the separation between these lines is the comparator hysteresis. These lines can be
moved up and down by positioning the cursor between them and dragging them with the left
mouse button held down. The separation (hysteresis) can also be adjusted, by dragging with the
right mouse button held down. The vertical cyan-colored lines determine the area of interest for
image analysis. They can be dragged left and right, individually, with the left mouse button held
down. The yellow line — and any yellow feature, for that matter — represents the result of an
image analysis measurement.

o Image Brightness Window: The narrow window below the scope window is divided into three
slices. The bottom slice shows the instantaneous image brightness for each pixel as a gray level.
The next slice up, shows which pixels register as “light” pixels after thresholding. The top slice is
used to show image analysis results (in yellow) when those results include location or count
information.

e Binary Acquisition Controls: These adjust the threshold types and values and are discussed in
their own section below. Suffice it to say here that changes to these controls are reflected in the
magenta lines displayed in the scope window.

o Image Analysis Controls: These controls make it easy to measure various features in an
acquired image to test what might work or not work in your application. They are discussed in
detail in their own section to follow. The value in the window after “equals” (in yellow) is the
numerical result to which the yellow graphics coincide. In the example above, this is the value of
the first pixel in the region defined by “between 1 and 255”. The “Code” button will be used in a
future rev of this program to write a PBASIC program for you that performs the scan acquisitions
and performs the image analysis that you've selected.

Focus

The monitor program enables almost instant feedback for focusing the lens. Below are two screenshots:
one of a backlit comb that’s in focus, and one that’s not. Notice the sharper edges and more pronounced
detail in the in-focus image. This is what you need to strive for. By screwing the lens in and out, while
watching the scope window, you will be able to maximize the sharpness of your image to obtain the best
— and most repeatable — results.

e e

Backlit Comb in Focus Backlit Comb Out of Focus

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 15 of 52

Cosine Effect

You may have noticed in the images above that the center of the image is brighter than the edges. This
is an optical property that’s present in nearly all imaging systems. It's known as the “cosine effect”, and it
makes images appear brighter near their centers than at the edges. This happens because a light
emitter, such as a diffuse backlight, is brighter on-axis than off-axis. Since the edges of a flat light source
are captured more off-axis than the center, they appear darker. Compounding the effect is the fact that,
behind the lens, light striking the sensor at the edges comes in at a more oblique angle than light striking
the center. This effect becomes more pronounced as the imaging lens’s focal length decreases (i.e.
becomes more wide-angle).

Here's a scan of just the backlight, without anything in front of it. Even though the backlight itself is very
evenly illuminated, it appears to have a cosine-shaped brightness contour when imaged with the camera.

e ————————————————————
=
Image from Backlight Only, Showing the Cosine Effect

Different ways of dealing with this effect are discussed later in the section “Image Analysis and
Measurment”.

Note: This also illustrates the importance of keeping everything clean. Do you see that little divot in
the trace, about two-thirds of the way across? It was caused by a tiny lint fiber clinging to the sensor
chip. If you see something like this, unscrew the lens housing from the board, and use dry
compressed air, or a soft cloth to remove whatever is causing the problem.

Binary Image Acquisition

The AVR firmware that you uploaded to the MoBoStamp-pe enables a wealth of image acquisition
options, particularly in the conversion of grayscale pixel values to binary light/dark values suitable for
image analysis. Binary pixels are acquired using sub-pixel resolution. This enables the acquisition of 255
binary pixels from the 128 grayscale pixels output from the TSL1401R. The firmware accomplishes sub-
pixel resolution during image acquisition time by interpolating a virtual pixel between every pair of actual
pixels, as shown below:

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 16 of 52

Binary Pixel Numbers
1 3 5 7 9 11 245246247 245249 250251252253 254 255

o

AN Y

0 1 2 3 4 5 122 123 124 125 126 127
Gray-level Pixel Numbers

All light/dark thresholding takes place using the values of the 255 real and interpolated pixels, yielding
255 bits of data, whose positions are numbered 1 through 255. (Note: This one-based numbering is
different from that of the direct BS2 numbering shown earlier. That was zero-based to conform with
PBASIC's zero-based subscript conventions.) Binary pixel 0 is non-existent in this system and is used in
the context of image analysis to indicate “feature not found”.

Conversion from gray-level to binary pixels always uses two thresholds for each pixel. Normal, compare-
to-level thresholding treats the area between the two thresholds as a “hysteresis band”. In order to
transition from dark to light, a pixel must attain a light level above the upper threshold. To transition
from light to dark, a pixel’s level must sink below the lower threshold. Excursions into and out of the
hysteresis band, without crossing it completely, will not result in a dark-to-light or light-to-dark transition.
This helps to eliminate “hair trigger” transitions when the level is near threshold. (Of course, if this is
what you want, you can always set the hysteresis value to zero.) This kind of comparison is illustrated in
the above diagram by the color of the dots.

The firmware also supports “window” comparisons, in which values inside the hysteresis band evaluate to
zero; those above or below, to one. This is useful for determining how much a subject’s light intensity
deviates from an acceptable range of levels, for example.

Thresholds can also be either “fixed”, as the example above illustrates, or “floating”. A floating threshold
follows the contour of the pixel response as a kind of moving average whose filter constant is
programmable. This can be handy for thresholding subjects whose illumination is uneven. It also allows
the detection of extreme edges, while ignoring gently rising or falling light levels. The screen shots below
illustrate this:

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 17 of 52

Threshn:nld: Hysterasis: Filter: En:nmpare:

Here, a floating threshold with a filter factor of 6 has been selected. Now, see what happens when the
filter factor is changed to 2:

Threshuld: Hyszteresiz: Filter: I:-:umpare:

Only the most extreme rising edges are detected in this case, as indicated by the green area in the
narrow strip below the scope window. In fact, one of the most important applications of floating
thresholds is edge detection.

Another application of floating thresholds is in “texture” detection. Texture is a characteristic associated
with rapidly alternating pixel values. The seeds and herbs on a bagel represent texture, for example. In

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 18 of 52

fact, a possible application might be inspecting bagels to see if they have enough “stuff” sprinkled on
them. In this case, we would set the floating threshold level to zero, the filter to zero, and the hysteresis
to a level consistent with how much texture we want to call “good”. Also, we'll use window comparison,
so that rising and falling pixel values get treated equally. Here is an example, using a bagel with stuff on
it (top) compared to a plain bagel (bottom):

Threshold: Hysteresis: Filter: D:umpare:

Threshold: Huysteresis: Filter: Enmpare:

Notice how the green “one” pixels capture the texture of the coated bagel, and even the fact that the
right side of that bagel has more stuff on it than the left side.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 19 of 52

Image Analysis and Measurement

The monitor program is capable of performing feature measurement on binary images. A “feature” can
be an edge location, the centroid of an object, the brightness of the brightest pixel, etc. The feature to be
measured is selected on the measurement control bar at the bottom of the screen:

Extreme = Light = & Falue between and [[EEey equalz

Possible values for the various options are:

Feature
First Pixel Value 1 to 255 1 to 255
Last i Edge Location

Extreme Object Count

Result

Average Area
Overall Extent

Not all combinations of these values will make sense or be realistic for the BASIC Stamp to compute. In
such cases the result will be shown as “n/a”. If a measurement can be computed, though, the numerical
value will be shown in the “equals” box, and a graphical indicator (also in yellow) will be displayed at the
appropriate place on the scope.

In a subsequent version of the program, the Code button will produce the PBASIC program necessary to
acquire an image and make the desired measurement.

Now let’s define some terms:

First: Beginning at the left-hand side, the first feature to match the conditions.

Last: Beginning at the left-hand side, the last feature to match the conditions.

Extreme Dark Pixel: Least bright pixel.

Extreme Light Pixel: Brightest pixel.

Average: Mean value of the feature(s) matching the conditions.

Dark Edge: Light-to-dark transition, reading from left to right.

Light Edge: Dark-to-light transition, reading from left to right.

Object: The span between an edge of the object type (dark/light) and an edge of the opposite type.
Value: The intensity of a pixel or collection of pixels.

Location: The pixel index (1 — 255) of the selected feature, or zero if the feature wasn't found.
Count: The number of features meeting the specified conditions.

Area: The number of dark or light pixels encompassed by the selected feature.

Extent: The number of total pixels encompassed by the selected feature.

When experimenting with the various measurement options, it's often handy to freeze image acquisition
using the Stop or Single button. That way, you can adjust the measurement parameters with an image
that’s not itself changing.

Now, let's explore image analysis using a real-life example: bottling juice. Before the bottles are cased,
the bottler wants to know two things: a) is the bottle full, and b) is the cap on? In this example, bottles
will be passing between a backlight and the camera. So the camera will be looking through the bottle
towards the backlight. This is what it will see. To the right of this image is a rotated scope display,
showing what the TSL1401-DB sees. (Lighter is to the left; darker, to the right.)

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 20 of 52

Clearly visible are the shadows created by both the cap and the meniscus at the liquid level. Although the
juice in this example is colored, such a sharp meniscus will be present even with water-clear liquids. By
measuring both the position of the meniscus and the size of the cap shadow, we can determine if the
bottle is filled and capped properly.

Once again, you can see evidence of the “cosine effect” discussed earlier. There are multiple possible
ways of correcting for this effect. These include:

e Storing a brightness contour and dividing each captured pixel level by its contour value (not
possible with the AVR firmware due to lack of memory).

e Using a telephoto lens and backing off from the subject to narrow the “capture angle” (possible
with the TSL1401-DB, but requires a different lens).

e Using lighting that’s brighter near the image edges than at the center (possible, but sometimes
difficult).

e Using a floating threshold that approximates the contour when capturing binary images (easiest
where practical).

In this example application, we will use the floating threshold method.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 21 of 52

In the next pair of images, you can see the difference between a full bottle and one that’s not so full. To
find the liquid level we use the “First Dark Object Location” measurement:

Threzhold: -- Hysteresm F Filker: - Eu:umpare

-ation = I:netween and [P equals Code I
Full Bottle

Threzhold: Hysteresm P Filter: I:::umpare
equalsm Code |

1= B 255

,': Laoc an..r..': between

Not-so-full Bottle

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 22 of 52

In the next pair of images, you can see the difference between a bottle that's capped and one that’s not.
Here we use the “Last Dark Object Area” measurement:

Threzhold: - = Hysteresm F Filker: - Eu:umpare
ar‘u:l 255= equals Code I

Capped Bottle

Threzhold: -- Hysterems |': Filker: - Enmpare
25E= equals“ Code |

between

between [[RE=] and

Uncapped Bottle

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 23 of 52

By setting allowable ranges for these two measurements, we can tell if any bottle presented to the
camera “passes” inspection. In the next section, we will see how to write a PBASIC program to perform
the various measurements required by applications similar to this one.

Programming with the TSL1401 Driver using PBASIC

Programs written in PBASIC for the MoBoStamp-pe can interact directly with the AVR coprocessor, which
handles all the TSL1401R interface details. This interaction consists of sending commands to the AVR and
waiting for results, which can then be read out to the user’s PBASIC program for further action. There are
commands for setting parameters, acquiring images, counting and finding pixels, and dumping results.
Nearly all of the binary pixels processing can be done in the AVR itself at machine language speed, so it's
seldom necessary to read the actual binary pixels into your PBASIC program. But they're available
anyway if you need to examine them.

Immediate and Buffered Modes

Commands are handled by the AVR in two modes: immediate mode and buffered (deferred) mode. In
immediate mode, you send the AVR a command and it is executed right away. In buffered mode, you can
send as many as eleven bytes of commands, but they are not executed until the end-of-buffer command
is received. This makes it possible to queue up commands to acquire and analyze an image ahead of time
and then execute them all in rapid sequence when the proper moment arrives. Not all commands can be
buffered, however. The ones that cannot are the ones that send data directly to the PBASIC program as
they execute.

Sending Commands

Commands are sent to the AVR using PBASIC's OWOUT statement. For example, to begin acquisition of
a simple binary image, you would write:

OWOUT owio, 0, [ACQBIN]

The pin designator, owio, is either 6 for socket B (preferred) or 10 for socket A. The designator,
ACQBIN, is simply a constant defined in the code template at the end of this chapter. It's value is $A4.
In all the examples that follow, we shall use these predefined constants, instead of their numerical
equivalents, just to keep things as readable as possible. You will also want to use the code template
(downloadable from Parallax’s TSL1401-DB product page) to make writing — and reading — your programs
easier.

Ready/Busy Polling

Some commands, such as the ACQBIN command mentioned above, require a finite amount of time to
execute before their results can be read out or another command is sent. When these commands
execute, the AVR needs to be polled until the “not busy” condition is detected. This applies only to
immediate mode, though. In buffered mode, the “not busy” bit is sent only when all the commands in the
buffer have finished executing. And it does this regardless of whether any of the commands would
require it in immediate mode. Here’s a shippet of PBASIC code that does the read/busy polling:

DO
OWIN owio, 4, [busy]
LOOP WHILE busy

This reads a single bit variable, busy, and loops until it reads as a zero. It is most convenient to perform

the busy checking in its own subroutine, since it may be required more than once in your program. The
code template provides such a subroutine, named Ready.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 24 of 52

Memory Map

Your PBASIC program has read-only access to 48 bytes of the TSL1401 driver's internal memory. This
memory is used for storing binary pixel values, image acquisition stats, and the results of various image
processing functions. It is laid out as follows:

Name Addr Description
PIXELS $00 | Binary pixel data. Pixels are packed LSB first. Since there are only 255 pixels,
to $1F | the last pixel (bit 7 of location $1F) is always 0.
RESULTS $20 | Beginning of the results buffer. The internal result pointer is set here after a

to $24 | reset and after state changes between immediate and buffered modes.

$25 | Beginning of the command buffer (11 bytes) and continuation of the results
to $2F | buffer.

The named constants shown above are predefined in the code template near the end of this chapter. The
32-byte PIXELS area will always contain the results of the latest binary scan. Following that is the 16-
byte RESULTS buffer. Immediately after an image is acquired, five bytes of the results buffer will contain
statistics from the acquisition. These are discussed in detail in the image acquisition section. Unless the
firmware gets an OWIN/OWOUT reset pulse or changes state, further results from image analysis are
appended to these five bytes. The area they get appended to just happens to be the 11-byte command
buffer, where buffered commands are stored. For this reason, the command buffer is only temporary
storage, and a command sequence saved there must be reloaded each time it is used.

Resetting the Driver

PBASIC's OWOUT and OWIN commands include a provision for sending a “reset” pulse to the AVR. The
TSL1401 driver will accept this pulse anytime it's expecting I/O from the BASIC Stamp (and only then)
and will use it as a signal to reset its communication state and buffer pointers to their initial conditions.
The reset pulse is most often used to terminate a sequence of result data being read from the AVR, as
the following example shows:

OWOUT owio, 0, [DUMPADR, 32] 'Begin dumping from buffer address 32.
OWIN owio, 2, [minpix, minloc, maxpix, maxloc] 'Read 4 byte variables.

Here DUMPADR is a command to begin dumping data from the address given by the next byte. It is
followed immediately by a read, using OWIN. The OWIN parameter 2 indicates that a reset pulse
should be sent after the statement is finished executing (i.e. after the four variables have been read out),
which tells the AVR to quit transmitting data.

Any time such a reset pulse is received, the internal pointer that determines where the next result is
deposited in memory is set to $20, the beginning of the RESULTS buffer. So, when you're reading
results, make sure to read everything you need before sending a command that adds data to the buffer.
Otherwise any remaining data that you need to read might be overwritten.

There are two instances when a reset pulse will not be recognized by the driver:

e When the driver is busy.

e When a triggered acquisition is awaiting the trigger pulse.

In the former case, just complete the not-busy polling before resetting the firmware. The latter case is
discussed in the section, “Acquiring an Image”.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 25 of 52

Reading Data

Data can be read from the AVR using various forms of the dump command. The first is the DUMPID
command, which reads the firmware ID and version number. Its format is:

| DUMPID

DUMPID is a constant defined in the code template at the end of this section that has the value $DD.
(In all code examples that follow, we shall use the defined constants, since they make the code so much
more readable. It also makes the code more adaptable, in case the firmware gets upgraded and the hex
commands change.) After sending it to the AVR using OWOUT, you can read three bytes of data: two of
them are the letters “L” and “S” (for linescan); the last is just a byte (the version number), which, for this
version, is 1. Here’s a snippet of code that reads and displays the firmware ID:

OWOUT owio, 0, [DUMPID]
OWIN owio, 0O, [Ltrl, Ltr2, Ver]
DEBUG "Firmware version: ", Ltrl, Ltr2, DEC Ver

Ltrl, Ltr2, and Ver are Byte variables. When executed, the DEBUG screen should display:
Firmware version: LS1

The next dump command is DUMPFLAGS whose format is simply:

DUMPFLAGS

This command allows the PBASIC program to read one byte which contains various error flag bits that
can be used for debugging. The format of the flag byte is as follows:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BADCMD | CANTBUF | CMDOVF | DATOVF 0 0 0 0

The four most-significant bits are the error flags. A flag bit is set to 1 if its associated error has occurred
since the last time DUMPFLAGS was executed. (When DUMPFLAGS is executed, all the error flags are
cleared internally.)

e BADCMD is defined in the code template as $80. It can be ANDed with the flags byte to test
whether the AVR has received an unrecognized command.

e CANTBUF is defined as $40. It can be ANDed with the flags byte to test whether an attempt
was made to buffer a command (ACQGRAY or any of the dump commands) that can't be
buffered.

¢ CMDOVF (command overflow) is defined as $20. When ANDed with the flags byte, it will tell
you if an attempt was made to buffer more than 11 bytes of commands in the command/data
buffer.

o DATOVF (data overflow) is defined as $10. When ANDed with the flags byte, it shows whether
an attempt was made to buffer too many results in the command/data buffer.

Whenever an error condition occurs, the driver firmware will not permit further operations to be
performed until a reset is received. Under these conditions, if you execute a DUMPADR before sending a
reset, you will read a result equal to $FF. Since the last four bits of the result are supposed to be zero,
you will know something is wrong and can then send a reset, followed by another DUMPFLAGS
command to see what the error was. Here's the code that performs the aforementioned tasks:

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 26 of 52

OWOUT owio, 0, [DUMPFLAGS]
OWIN owio, 0, [flags]
IF (flags = $FF) THEN
OWOUT owio, 1, [DUMPFLAGS]
OWIN owio, 0, [flags]
ENDIF

The first DUMPFLAGS is sent without a prepended reset. Then the byte variable flags is read and
compared with $FF. If it's equal, that means the firmware is waiting for a reset, so DUMPFLAGS is sent
again — this time with a prepended reset (the 1 in the OWOUT command). At the end of this entire
sequence, the variable flags will contain either the error flag, which can be ANDed with one or more of
the error constants defined above to determine which error occurred, or zero, indicating that no error
occurred. The above sequence is included in the code template as the subroutine GetError.

Finally, is the DUMPADR command, which is used to read results from the driver’'s memory. Its format
is:

DUMPADR, Address

DUMPADR is a constant from the code template equal to $DA. Following it is an address byte, which
can range from 0 to 47 ($2F). Once these two bytes are sent, the firmware expects your program to
begin reading data using OWIN. It will continue sending data until a reset is received, at which point the
internal address pointer is reset to RESULTS ($20). Here's an example for reading the average pixel
value from the last scan:

OWOUT owio, 0, [DUMPADR, AVGPIX]
OWIN owio, 2, [average]

Here, AVGPIX is a constant from the template, equal to $24, and average is a byte variable used to
hold the result.

Setting Exposure Time

The TSL1401 driver acquires all images using one-shot imaging, as described above in the “Interface and
Basic Operation” section. It handles the exposure (integration) time details for you. All you have to do is
tell it how long you want each exposure to be. This is done with the Set Exposure command:

SETEXP, ExpTime

SETEXP is a constant defined in the code template that follows, whose value is $EE (mnemonic for
“enter exposure”). SETEXP requires one argument, ExpTime, the actual exposure time, which can
range from 1 to 255 and represents a time span of 267uS to 68mS. Note: Because exposure timing is
based on the AVR's internal RC clock, these times are approximate and can vary with temperature.

Here's a statement that sets the exposure time to 30 (about 8mS):

OWOUT owio, 0, [SETEXP, 30]

Once the exposure time is set, it stays set until changed by another SETEXP. If you never set the
exposure time explicitly, it defaults to a value of 128.

Setting Binary Acquisition Coefficients

When a binary image is acquired, each pixel is first read from the AVR's A/D converter as a value
between 0 and 255. Then it's converted to a 0 or a 1, depending on the values of the three coefficients

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 27 of 52

provided by this command. These are the Threshold, the Hysteresis, and the Mode. These
coefficients are the same as described above in the “TSL1401-DB Monitor Program” section. The
sequence of bytes required by the Set Binary Coefficients command is:

SETBIN, Threshold, Hysteresis, Mode

Where SETBIN is a constant having the value $EC (mnemonic “enter coefficients”).

Threshold is the value which determines whether an acquired pixel is a one (light) or a zero (dark).
Hysteresis is the width of the band above and below Threshold, which, in effect, creates two
thresholds: an upper and a lower. A pixel must be at least as high as the upper threshold to cause a
transistion from dark to light; and it must be lower than the lower threshold to cause a transistion from
light to dark. The separation between the two thresholds (the hysteresis band) is twice the value entered
for Hysteresis.

The Mode byte includes flags that determine the binary acquisition mode, along with the floating
threshold Filter value. It's format is:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bt2 | Bitl1 | BitO
0: Fixed 0: Level Reserved | Reserved | Reserved Filter value for floating threshold:
1; Floating | 1: Window 0 (no filtering) to 7 (maximum)

When FIXED thresholding is selected, each pixel is compared to the same, constant, upper and lower
thresholds, defined by Threshold and Hysteresis. The first pixel is compared to Threshold alone to
determine the initial state (0 or 1). After that, each pixel is compared with either Threshold +
Hysteresis, if the last comparison yielded a 0, or Threshold — Hysteresis, if the last comparison
yeilded a 1. Both Threshold and Hysteresis can range from 0 to 255. When their sum is greater than
255, 255 is used as the upper threshold. When their difference is less than 0, 0 is used as the lower
threshold.

When FLOATiIng thresholding is selected, the value given for Threshold is assumed to be a signed byte
that ranges from —128 ($80) to 127 ($7F). It is treated as an offset, which is added to an internal
floating parameter (Float) that changes, depending on the values of the pixels that preceded it. For the
first pixel, Float is simply assigned the value of that pixel. From there on out, Float is modified after
each pixel is processed, according to the formula:

Float = Float + (Pixel - Float) / (1 >> Filter)

Therefore, when Filter equals 0, Float takes on the value of the pixel itself. When Filter is a larger
number, Float becomes a moving average whose time constant increases as Filter increases. The new
value of Float is used to process the next pixel.

Each pixel is then compared with Float + Threshold + Hysteresis, if the previous pixel evaluated to a
0, or with Float + Threshold — Hysteresis, if the previous pixel evaluated to a 1.

The preceding discussion assumes that Level thresholding is in effect. If Window thresholding is
selected instead, the upper and lower thresholds are computed as described above, but each pixel is
assigned a 0 if it's value lies between the two thresholds, and a 1 if it's value lies above the upper
threshold or below the lower one (i.e. outside the window formed by the hysteresis band).

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 28 of 52

Here is a chart that shows how each binary acquisition mode might be used:

Threshold | Comparison | Filter Application

Fixed Level Looking for objects and edges when lighting is even.

Fixed Window Looking for intensity excursions outside a certain band.
Floating Level 5-7 | Looking for objects and edges when lighting is uneven.
Floating Level 2-4 | Edge location among widely varying pixel values
Floating Window 0-1 | Looking for texture, whose minimum intensity is determined by

Hysteresis. Set Threshold to 0.

Here's a statement that sets Threshold to 30, Hysteresis to 10, and uses a floating threshold with level
comparison and a filter value of 5:

OWOUT owio, 0, [SETBIN, 30, 10, FLOAT|LEVEL|5]

The constants SETBIN, FLOAT, and LEVEL are defined for you in the code template near the end of
this section. Instead of FLOAT, you could also choose FIXED; and instead of LEVEL, WINDOW, which
are also predefined.

Setting the LED

If you are using the StrobeLED-DBM mezzanine board, you can set the duration and/or brightness of the
LED flashes as shown here. The basic format for this command is:

SETLED, Amount

Where SETLED is a constant equal to $EB (mnemonic “enter brightness”), and Amount has the
following format:

Bit 7 Bit6 | Bit5 | Bit4 | Bt3 | Bit2 | Bitl1 | BitO
0: Intensity | LED brightness value (0 — 127), equivalent to 0 — 50% for duration of exposure.
1: Time LED “on” (strobe) time (0 — 127), equivalent to 0 — 3.4mS at 100% brightness.

Once the SETLED command has been issued, it stays in effect until reissued. When the lower seven bits
of Amount are zero, the LED is effectively turned off. Otherwise, it is turned on at the beginning of each
exposure. If bit 7 of Amount is zero, it remains on for the entire integration time at a level selected by
the lower seven bits. If bit 7 is one, it strobes on at 100% brightness for the duration specified by the
lower seven bits. This time is approximate and is governed by the AVR's internal RC clock. So it will vary
somewhat with temperature.

Here’s some sample code that causes the LED to strobe for about 1mS at the beginning of each
exposure:

OWOUT owio, 0, [SETLED, TIME|75]

TIME is a constant defined in the code template that equals $80. In its place, the constant INTEN may
be used. It's equal to zero and does nothing, but it makes the code more readable.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 29 of 52

Acquiring an Image

Image acquisition is done using the various acquire commands, each having the same general format:

Acquire

Acquire | XTRIG

They all take no arguments and come in eight flavors, which are described in the table below:

Command | Value Description

ACQGRAY $A0 | Acquire a binary image, while dumping all 128 grayscale pixel values.
ACQBIN $A4 | Acquire a binary image, replacing the previously-acquired image.

Acquire a binary image, ANDing the binary pixels with the previous image.

ACQAND $A1 | This can be used to track which bright pixels are common to all successive

scans.

Acquire a binary image, ORing the binary pixels with the previous image.

ACQOR $A2 | This can be used to track which bright pixels appear in one or more

successive scans.

Acquire a binary image, XORing the binary pixels with the previous image.

ACQXOR $A3 | This can be used in successive pairs to see which pixels change between

them (useful for motion detection).

Acquire a binary image, ORing the binary pixels with the NOT of the previous

ACQORNOT | $A5 | image. This reveals only those pixels that become dark betweens pairs of

scans.

Acquire a binary image, ANDing the binary pixels with the NOT of the

ACQANDNOT | $A6 | previous image. This reveals only those pixels that become bright between

pairs of scans.

Acquire a binary image, XORing the binary pixels with the NOT of the

ACQXORNOT | $A7 | previous image. This can be used in successive pairs to see which pixels

remain the same between them.

Two additional constants are defined in the code template: ACQDIFF, which is a pseudonym for
ACQXOR, and ACQSAME, which is a pseudonym for ACQXORNOT. These pseudonyms reflect the use
of these two commands, which is to find pixels which are either different from, or the same as, pixels
from the previous acquisition.

Although the acquire commands do not take an argument, there is one optional modifier that can be
ORed to it. This is the external trigger constant, XTRIG, which has a value of $08. When XTRIG is
ORed to any acquire command, the command, when executed, will wait for a falling edge on BASIC
Stamp pin P3, then begin its exposure. Since P3 is common to both daughterboard sockets, this same
pin triggers the TSL1401-DB in either one. This enables exposures to be synchronized precisely with an
external event, such as an encoder pulse or optosensor output.

Note: When the driver firmware is waiting for an external pulse on P3, it is not possible to reset it using

the OWOUT statement’s reset pulse. However, you can force an exposure by pulling P3 low momentarily
with the following PBASIC code sequence:

LOW O : INPUT O

Note that P3, like P2, should not be driven high. The MoBoStamp-pe includes pull-ups for this purpose,
allowing bussed open-collector drivers to actuate it by pulling it down.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 30 of 52

All of the acquire commands send out a not-busy bit in immediate execution mode when they have
completed their work. The exception is the ACQGRAY command, which sends the not-busy bit ahead of
outputting the 128 bytes of grayscale pixel data. In any case, it is necessary to poll for this bit after
sending any acquire command to the AVR.

The image acquisition commands all result in 255 bits of subpixel-resolution image data in the AVR’s
internal data buffer. You can access this data using the DUMPADR command described later. However,
this is seldom necessary, given the firmware’s internal image analysis functions, also described later.
Here's a code snippet that sets the exposure time to 30, the threshold and hysteresis to a fixed 64 and
10 respectively, causes the AVR to wait for P3 to transition low, then acquires a binary image. It then
waits for the image acquisition to complete by calling the Ready subroutine (defined in the code
template) that polls the AVR for a not-busy condition:

OWOUT owio, 0, [SETEXP, 30, SETBIN, 64, 10, FIXED|LEVEL, ACQBIN|XTRIG]
GOSUB Ready

This also demonstrates how commands can be chained in a single OWOUT statement.

The ACQGRAY command is unique in that it gives you access to the gray-level pixel values as it reads
them out from the TSL1401R. Since there isn’t enough memory in the AVR to store all these values, they
have to be sent to the BASIC Stamp on the fly. For this reason, any PBASIC program that uses
ACQGRAY should read these 128 bytes of data and do something with them as quickly as possible.
Slowing down acquisition from the TSL1401R chip could result in “pixel droop”, as the internal charge
storage capacitors self-discharge. The two plots below illustrate this effect. For this test, the lens and lens
housing were removed in order to illuminate the TSL1401R chip as evenly as possible. In the first, the
pixels are read out at and transmitted to the host PC at maximum speed (about 1.4 mS/pixel). The pixel
intensities are all within 14 of each other (8% of the maximum), as indicated by the threshold cursors. In
the second, an additional 20mS was added to each pixel time (2.56 seconds overall) to read out the scan.
You can see the droop near the end that results from the internal caps discharging — very unevenly — as
they await their turn to be read. And the band between the highest and lowest pixels increases to 48, or
27% of the maximum. Of course, two and a half seconds to read out the pixels would be quite extreme.
But it illustrates quite graphically what happens if they're read out to slowly. Also, bear in mind that this
effect can only occur with ACQGRAY and not with any of the binary acquisition commands.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 31 of 52

—

Threshu:ulu:l: Hysteresis: Filter: Eu:umpare:

Intensity plot resulting from even illumination and a fast readout. The little “blips” at
the ends are due to a lensing effect from the edge of the clear chip package. They do
not appear when an imaging lens is in place.

—

Threshnld: Hysteresis: Filter: I:::umpare:

Intensity plot resulting from even illumination and a very slow readout.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 32 of 52

Here’s a program snippet that uses ACQGRAY and outputs the pixel data at 38400 baud to the DEBUG
port. It's identical to that used by the TSL1401-DB Monitor Program:

pixno VAR Byte
char VAR Byte (16)

OWOUT owio, 0, [ACQGRAY]
GOSUB Ready
FOR pixno = 0 TO 7
OWIN owio, 8, [STR char\16]
SEROUT 16, 6, [STR char\16]
NEXT

In the above code, Ready is a subroutine, defined in the code template, which polls the AVR until it's no
longer busy.

The binary acquisition commands that perform Boolean operations on the data acquired from a previous
scan can be used to see what changes or stays the same between acquisitions. With the possible
exception of ACQAND and ACQOR, they are typically used second in a pair of commands, the first being
an ACQBIN. In other words, you first obtain a scan that simply records pixels in the usual way, then wait
awhile, then obtain another scan modifies the first one.

In addition to the 32 bytes of binary pixel data, each acquire command also collects statistics from the
image it has acquired. These are the intensity and location of the dimmest pixel, the intensity and
location of the brightest pixel, and the average pixel intensity over the entire image. The following chart
shows the readable AVR memory locations, including those affected by the acquisition commands:

Name Addr Description
PIXELS $00 | Binary subpixel data. Pixels are packed LSB first. Since there are only 255
to $1F | pixels, the last pixel (MSB of location $1F) is always 0.

MINPIX $20 | Intensity (0 — 255) of the dimmest pixel.

MINLOC $21 | Location (0 — 127) of the dimmest pixel. If multiple pixels share the lowest
intensity, it will be the location of the last one.

MAXPIX $22 | Intensity (0 — 255) of the brightest pixel.

MAXLOC $23 | Location (0 — 127) of the brightest pixel. If multiple pixels share the brightest
intensity, it will be the location of the last one.

AVGPIX $24 | Average pixel intensity (0 — 255) of all 128 pixels.

The location information ranges from 0 to 127. This is because we're dealing with grayscale pixels here,
and there are only 128 of them, whose locations are zero-based. (Binary pixels, by contrast, number from
1 to 255.) The information provided by these stats can be used, for example, to adjust the exposure
time to maintain a constant maximum pixel intensity. An example of this technique is shown in a later
section.

In addition to buffering pixels and stats, the acquire commands initialize the internal Left and Right
pointers for counting a searching to 1 and 255, respectively.

Counting Pixels and Edges

One of the simplest methods of analyzing a binary image is to determine how many pixels are bright and
how many are dark. This information alone can tell you an object’s width, for example, a conveyor’s
degree of coverage, or whether a bottle cap is present. The commands that performs this task are
CNTNEW and CNTNXT:

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 33 of 52

CNTNEW | Modifiers, Begin, End

CNTNXT | Modifiers

CNTNEW is a constant defined in the template as $C8. The CNTNEW command counts pixels or edges
between pixels Begin and End, inclusive. Begin and End can range from 1 to 255, and Begin should
be less than or equal to End. (Remember that binary pixel locations are one-based, not zero-based. The
first pixel is pixel #1.)

CNTNXT ($C0) counts pixels or edges between the current internal Left and Right limits, whatever they
might be. These limits are set by the following actions, whichever occurred most recently:

e Any acquire command, which resets Left to 1 and Right to 255.

e Any CNTNEW command. Left ends up at Begin; Right, at End.

¢ A FNDNEW command. Left is initialized to Begin; Right, to End.

e Any FNDNEW or FNDNXT command, wherein Left is moved to the found pixel or edge
(searching forward), or Right is moved to the found pixel or edge (searching backward). If the
desired feature is not found, Left will equal Right + 1, causing further counts and finds to return
zero.

The modifiers that can be used with (i.e. ORed to) CNTNEW or CNTNXT are:

Name | Value Description
DRKPIX | $00 | Count dark pixels.
BRTPIX $02 | Count bright pixels.
DRKEDG | $03 | Count dark (high-to-low) edges.
BRTEDG | $01 | Count bright (low-to-high) edges.

When DRKPIX or BRTPIX is selected, the command counts either dark pixels or bright pixels,
depending on which modifier is used. Here’s an example:

OWOUT owio, 0, [CNTNEW|DRKPIX, 32, 64]
GOSUB Ready

This will count all the dark pixels between locations 32 and 64, inclusive. Suppose the binary pixel array
looked like this, where vertical bars represent the location 32 and 64 boundaries:

| ... 0000111000 | 11111111000000001111110000111111 | 1111100000 ... |
31 32 64 65

In this case, there would be twelve dark pixels counted, and a 12 would be written at the next available
byte location in the results buffer. Assuming that this CNTNEW was the first command after an image
acquisition, that would be location RESULTS + 5 ($25), so we could read the result into the Byte
variable dark_count with the following code:

OWOUT owio, 0, [DUMPADR, RESULTS + 5]
OWIN owio, 2, [dark count]

Once this sequence of code has executed, remember, the results buffer pointer is reset to RESULTS

($20), and the next result computed will be buffered there. This is due to the reset sent at the end of
the OWIN statement.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 34 of 52

When DRKEDG or BRTEDG is selected, the command looks for the first pixel that does not match the
selected intensity (i.e. DRK or BRT), starting from the Left limit. It then looks for the next pixel that does
match. This transition is an edge, and is counted as such. This process continues, accumulating the edge
count until the Right limit is reached. Here is an example:

OWOUT owio, 0, [CNTNEW|DRKEDG, 32, 64]
GOSUB Ready

Here are the same pixels, but with the counted edges Ijlfe]allfe]s)e=le] :

[...0000111000 | 11111111[§0000000111111[§000111111 [1111100000 ... |
31 32 64 65

There are two such edges within the region of interest, so the result of this command is 2, which is then
buffered at the next available buffer location. Assuming again that this is just a continuation of the code
that went before, we could then read this result into the Byte variable edge_count from location $20
(RESULTS):

OWOUT owio, 0, [DUMPADR, RESULTS]
OWIN owio, 2, [edge count]

But if we're interested in both the pixel count and the edge count, it's much more efficient to compute
them both, then read the results. This is what the code would look like in that case:

OWOUT owio, 0, [CNTNEW|DRKPIX, 32, 64]
GOSUB Ready

OWOUT owio, 0, [CNTNXT |DRKEDG]

GOSUB Ready

OWOUT owio, 0, [DUMPADR, RESULTS + 5]
OWIN owio, 2, [dark count, edge count]

Note that, because these commands are executed immediately, we need to wait for each one to
complete by calling Ready before sending another. Also note that edge_count is now being read from
location RESULTS + 6 ($26) instead of RESULTS ($20). This is because there is no reset this time
between reading dark_count and edge_count.

Also note that CNTNEW leaves the internal pointers set to Begin and End, and CNTNXT leaves the
internal pointers where they were when it was invoked. For that reason, the second count can use
CNTNXT, since the 32 and 64 are already established.

In the section that discusses buffered commands, we shall see how this whole sequence can be made yet
more efficient by chaining the commands in the command buffer and executing them as a single
command.

Locating Pixels and Edges

In addition to counting pixels and edges, it's also useful to know where certain pixels and edges are
located within the image. We may want to locate the edge of a web on a paper machine, for example, to
make sure it's tracking right, or follow a seam for welding two pipe sections together, or determine the
level of liquid in a clear bottle. The commands that do all this are FNDNEW and FNDNXT:

FNDNEW | Modifiers, Begin, End

FNDNXT | Modifiers

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 35 of 52

FNDNEW is a constant defined in the PBASIC code template as $F8 and finds pixels or edges between
pixels Begin and End, inclusive. Begin and End can range from 1 to 255, and Begin should be less
than or equal to End. (Remember that binary pixel locations are one-based, not zero-based. The first
pixel is pixel #1.)

FNDNXT finds pixels or edges between the current internal Left and Right limits, whatever they might
be. These limits are set by the following actions, whichever occurred most recently:

e Any acquire command, which resets Left to 1 and Right to 255.

e Any CNTNEW command. Left ends up at Begin; Right, at End.

e A FNDNEW command. Left is initialized to Begin; Right, to End.

e Any FNDNEW or FNDNXT command, wherein Left is moved to the found pixel or edge
(searching forward), or Right is moved to the found pixel or edge (searching backward). If the
desired feature is not found, Left will equal Right + 1, causing further counts and finds to return
zero.

The modifiers that can be used with (i.e. ORed to) FNDNEW and FNDNXT are:

Name | Value Description
FWD $00 | Search from left-to-right.
BKWD $04 | Search from right-to-left.
DRKPIX | $00 | Locate dark pixels.
BRTPIX $02 | Locate bright pixels.
DRKEDG | $03 | Locate dark (high-to-low) edges.
BRTEDG | $01 | Locate bright (low-to-high) edges.

These are the same modifiers used with CNTNEW and CNTNXT, but with two additions: FWD and
BKWD. With these modifiers, you can select which end to start the search from. Searching forward starts
from the Left limit and scans towards the right until either the desired feature is found or the Right limit
is reached. Searching backwards starts at the Right limit and scans to the left until either the desired
feature is found or the Left limit is reached.

Each invocation of FNDNEW or FNDNXT appends one byte to the results buffer. If the sought-after
pixel or edge was found, this byte will be its position (1 to 255) in the binary image. If it wasn't found,
the result will be 0.

Another side effect of the find commands is that the Left or Right limit, whichever one you started from,
is replaced by the result of the find. So, for example, if the first dark pixel, scanning from the left, were
found at position 45, then the new value of Left would become 45. That way, the next time you use
FNDNXT to scan from the left, the search picks up where the last one ended, at position 45. This makes
it possible to chain multiple finds to locate, say, the third occurrence of a certain feature, rather than just
the first one. If the result of the search is 0, the internal Left and Right limits will have crossed, forcing all
subsequent searches to result in 0 as well, until these limits are reset to new values.

When the DRKPIX or BRTPIX modifier is selected, FNDNEW and FNDNXT will look for the first dark
or light pixel in the selected direction, depending on the modifier used. For example, suppose we want to
find the first dark pixel between locations 32 and 64, scanning from left to right. Here's the code that
does it:

OWOUT owio, 0, [FNDNEW|FWD|DRKPIX, 32, 64]
GOSUB Ready

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 36 of 52

As with the count commands, we need to call Ready before issuing further commands. Now suppose the
binary pixel array looked like this, where vertical bars represent the location 32 and 64 boundaries:

| ... 0000111000 | 11111111000000001111110000111111 | 1111100000 ... |
31 32 64 65

The result of the FNDNEW would thus be 40, the location of the first dark pixel, starting from location
32 and moving right. That value would be appended to the results buffer, as with the count commands,
and we can read it into the Byte variable location like this (assuming this is the first command after the
last acquisition:

OWOUT owio, 0, [DUMPADR, RESULTS + 5]
OWIN owio, 2, [location]

Now suppose we wanted to locate the first dark-to-light edge in the same region. Here’s the code:

OWOUT owio, 0, [FNDNEW|FWD|BRTEDG, 32, 64]
GOSUB Ready

We use BRTEDG here because that’s the kind of edge (low-to-high) FNDNEW has to find. But for there
to exist such an edge within the given range, there has to be a dark pixel first, followed by a light one.
So, given the same image as above, we find our edge at location 48, as Jalls[gll{e]sle=le}:

[...0000111000 | 1111111100000000/111110000111111 | 1111100000 ... |
31 32 64 65

Now, suppose we want to find the first bright object in the same region. A bright object is one that
begins with a low-to-high transition and ends with a high-to-low transition. Here is where chaining two
finds comes in handy:

1ft edge VAR Byte
rgt edge VAR Byte

OWOUT owio, 0, [SETEXP, 60, SETBIN, 100, 3, 0, ACQBIN]
GOSUB Ready

OWOUT owio, 0, [FNDNEW|FWD|BRTEDG, 32, 64] '
GOSUB Ready ' Chained finds
OWOUT owio, 0, [FNDNXT|FWD|DRKEDG] !
GOSUB Ready 0

OWOUT owio, 0, [DUMPADR, RESULTS + 5]
OWIN owio, 2, [1ft edge, rgt edge]
IF (rgt edge) THEN
DEBUG "Object found starting at ", DEC 1ft edge, " and ending at ", DEC rgt edge - 1
ELSE
DEBUG "No object found."
ENDIF

There are several things to talk about in the above code:

e First, once we've located the first edge, we want to continue from where we left off to find the
second one, so we use FNDNXT for the second, leaving off the Begin and End locations.

e Second, since we've chained two commands in a row, after the ACQBIN, our results will be
found sequentially, beginning at location RESULTS + 5.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 37 of 52

e Third, there’s a chance that the first edge won't have been found. But we didn’t check for that;
we just plowed ahead, looking for the second edge. But remember the way find works: if it
doesn't find something once, it won't find anything on subsequent FNDNXTs either, until the
Left and Right limits are reset to new values. So we're safe there.

e Fourth, we're only checking for the presence of the right edge in the IF statement to see if the
entire object is present. Again, that's because if the left edge wasn't found, the right edge is
automatically not found either. So that’s all we need to check.

e And finally, what's with the "= 1" in the first DEBUG statement? Well, here are the two edges we
would have found with the above image:

[...0000111000 | 1111111100000000/11111§000111111 | 1111100000 ... |
31 32 64 65

The second edge is located one pixel beyond what we consider to be the right edge of the object so, to
point to the right edn of the object we need to subtract one. On the other hand, if we're interested in the
size of the object, we can just subtract Ift_edge from rgt_edge.

Now, suppose the central portion of above image represents a backlit bagel. In this situation, the bagel
consists of two dark, silhouetted areas separated by a bright hole. What we're after here is the diameter
of the bagel; we don't care about the hole. This is where a backward search comes into play. First we
locate the first bright-to-dark edge scanning forward. Next we locate the first bright-to-dark edge
scanning backward. These will be the extreme left and right edges of the bagel, from which we can
compute its diameter. Here’s the code:

1ft edge VAR Byte
rgt edge VAR Byte

OWOUT owio, 0, [SETEXP, 60, SETBIN, 100, 3, 0, ACQBIN]
GOSUB Ready
OWOUT owio, 0, [FNDNEW|FWD|DRKEDG, 32, 64]
GOSUB Ready
OWOUT owio, 0, [FNDNXT |BKWD |DRKEDG]
GOSUB Ready
OWOUT owio, 0, [DUMPADR, RESULTS + 5]
OWIN owio, 2, [1ft edge, rgt edge]
IF (rgt edge) THEN
DEBUG "Bagel found with diameter ", DEC rgt edge - 1ft edge + 1
ELSE
DEBUG "No bagel found."
ENDIF

Okay, everything looks as expected, except for that "+ 1”. What's up with that? Here are the edges that
the program found:

[...0000111000 | 11111111[§00000001111110008111111 | 1111100000 ... |
31 32 64 65

When scanning backward for an edge, FNDNXT looks for the first bright pixel, which is at location 64,
then, moving right to left, the first dark pixel after that, which is the one highlighted above and which is
part of the bagel itself. Hence, the necessary addition to get the diameter.

Of course, all this assumes that we're looking at the largest part of the bagel, which would be a real

coincidence. In a subsequent section, we'll see how to parlay this into an application that inspects bagels
moving past on a conveyor and that finds their actual diameters.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 38 of 52

Buffering Commands

In the prior section, we saw how commands can be chained in immediate execution mode, and how a
call to Ready must be performed after some of them. Here we shall see how to eliminate these
extraneous calls by buffering a whole sequence of commands. When this is done, one call to Ready has
to be performed after the commands are executed (regardless of which commands were buffered). But
that's it: just a single call to Ready.

The buffering commands are as follows:

“<”, commands, being, buffered, “>"

The command “<" can only be executed in immediate mode, and it puts the TSL1401 driver in buffered
mode. Commands entered after that are buffered in the driver's memory, beginning at location RESULTS
+ 5, but are not executed. When the command “>" is encountered, it is buffered, too, and execution
begins from the beginning of the buffer. Each buffered command is executed in turn until the “>" is
reached. Because commands are buffered in what will become the results area of memory, they are likely
to get clobbered as results get appended there. However, execution will always be at least one step
ahead of the results, so the only commands that get clobbered will be ones that have already executed.

Here are some additional important points:

e When “<” is sent in immediate mode, and when “>" is encountered when executing from the
buffer, the internal results pointer is reset to RESULTS ($20). That means further results will
be appended to the buffer beginning at that point.

e Do not buffer the ACQGRAY, DUMPID, DUMPFLAGS, or DUMPADR; and do not buffer more
than eleven bytes, including the “>". Doing so will raise an error condition, and you will need to
run the error recovery procedure outlined above, or else reload your program.

¢ Since nothing gets executed until the “>" is received, you can send everything up to that point
but defer sending the “>" until the time is right to begin execution.

Now, let’s see how to rewrite our code from the previous example to use buffering:

1ft edge VAR Byte
rgt edge VAR Byte

OWOUT owio, 0, [SETEXP, 60, SETBIN, 100, 3, 0, ACQBIN]
GOSUB Ready
OWOUT owio, 0, ["<", FNDNEW|FWD|DRKEDG, 32, 64] ' Buffered commands.
OWOUT owio, 0, [FNDNXT |BKWD|DRKEDG, ">"] !
GOSUB Ready
OWOUT owio, 0, [DUMPADR, RESULTS]
OWIN owio, 2, [lft edge, rgt edge]
IF (rgt edge) THEN
DEBUG "Bagel found with diameter ", DEC rgt edge - 1ft edge + 1
ELSE
DEBUG "No bagel found."
ENDIF

By buffering the finds, we eliminate one call to Ready, since the driver firmware waits until a/ the
buffered commands have executed before signaling that it is no longer busy. Notice, too, that we now
have to read our results from address RESULTS, instead of RESULTS + 5. This is because the “<”
reset the results pointer back to that point after the ACQBIN executed. How many bytes did we actually
buffer, anyway? In the first line, there are three: the “<” doesn't get buffered. In the second line there

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 39 of 52

are two: the “>" does get buffered. That's five altogether, so we're well within the eleven limit. As we
shall see in the next section, we can even include an acquisition command in the buffer.

Bagels and Bottles: Putting it All Together

Let's integrate everything we've learned now into a real application. In this application, we've got bagels
passing by single-file atop a black conveyor belt. They are being lighted from above, so they will look
bright against a dark background. We want to record the outer diameter of each one. For this app, we
assume that the bagels are round and not oval. We also assume that there is a wide enough gap
between each pair of bagels that we will see it at least once. Finally, we assume that the conveyor spans
the entire field of view and that there are no crumbs on it to confuse the camera. (In real life, we would
have to question every one of these assumptions!) Here is the meat of the code that will do the work. As
with all previous examples, we must wrap it in the template given at the end of this chapter to be
complete:

1 1ft edge VAR Byte
2 rgt edge VAR Byte
3 max dia VAR Byte
4
5 OWOUT owio, 1, [SETEXP, 30]
6 OwoUT owio, 0, [SETBIN, 128, 10, FIXED|LEVEL]
-
8 DO
9 OWOUT owio, 0, ["<", ACQBIN, FENDNXT |FWD|BRTEDG]
10 OWOUT owio, 0, [FNDNXT |BKWD|BRTEDG, ">"]
11 GOSUB Ready
12 OWOUT owio, 0, [DUMPADR, RESULTS + 5]
13 OWIN owio, 2, [1lft edge, rgt edge]
14 IF (rgt edge) THEN
15 max_dia = rgt_edge - 1ft edge + 1 MIN max dia
16 ELSEIF (max dia) THEN
17 DEBUG "Bagel diameter: ", DEC max dia, CR
18 max dia = 0
19 ENDIF
20 LOOP

Line numbers have been added to the left of the actual program so we can discuss each line here:

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 40 of 52

Line Description

Some variables that aren’t included in the template are defined here. You're already familiar with
1-3 | Ift_edge and rgt_edge. The variable max_dia is used to keep track of the largest diameter
seen so far on a particular bagel.

5 | Exposure time is set to 30.

Binary acquisition parameters are set: Threshold = 128; Hysteresis = 10; Threshold is fixed
instead of floating, and comparisons are done on the level instead of a window.

Once the basic parameters have been established, they don't change. The real work can now
commence within a DO loop.

Here, we buffer the plain binary acquire command, and the command that looks for the first
dark-to-bright edge. Notice that we just use FNDNXT here, without the Begin and End limits.
This is because we're scanning the entire field of view. When a new image is acquired, these
limits are automatically reset to 1 and 255, respectively.

Continuing with the buffering, we include the command that looks for the same kind of edge, but
10 | coming in from the right. We also end the buffering, which starts the whole chain of commands
executing.

Here, we wait for all the commands to finish executing. When they do, the image will have been

1 acquired, and both edges will have been located — all with only four bytes in the buffer.

Now we're ready to read the results, so start reading from location RESULTS + 5. This is
12 | because the ACQBIN is buffered along with the finds, and it always adds five bytes to the
results buffer, thus pushing the find results five bytes higher.

13 | Read the positions of the left and right edges.

14 | If we found the right edge, the left edge is there, too.

15 The current diameter is rgt_edge — Ift_edge + 1. If that's greater than the maximum diameter
seen so far on this bagel, make it the maximum diameter, using the MIN operator.

16 If we didn't see an edge, we're between bagels, and if max_dia is non-zero, one has just gone
past that we haven't recorded yet.

17 | So tell the world what we just saw.

18 | Reset max_dia to zero, so it's ready for the next bagel.

20 | And back for another scan.

So that’s it: a complete inspection-and-reporting program in 20 lines of code. But let’s take it one step
further. One technique where buffering really shines is when it's combined with externally-triggered
exposures. This makes it possible to buffer an entire acquisition-and-analysis sequence and to begin
execution immediately. But nothing will happen until a falling edge on P3 is detected, whereupon the
driver firmware springs into action by itself, “snaps the picture”, and does the analysis. All the PBASIC
program has to do is call Ready when /t’s ready, to see if new results are available. In fact, if further
processing of the results read from the firmware is required, we can even “arm” the firmware ahead of
that processing, in order to overlap processing one image with acquiring the next.

To demonstrate this technique, we're going to change the mission slightly. Instead of looking for each
bagel’'s maximum width, we're going to measure each one to compute the overall area covered by the
bagel, including the hole. For measurement consistency, we've installed an encoder on our hypothetical
conveyor that issues a pulse every quarter inch of travel. So, if we measure the overall width of each
bagel every quarter of an inch of travel and accumulate the sum of those widths, we will have measured
its area once it has passed.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 41 of 52

Here’s one way to do it:

1 1ft edge VAR Byte
2 rgt edge VAR Byte
3 area VAR Word
4
5
6 OWOUT owio, 1, [SETEXP, 30]
7 OWOUT owio, 0, [SETBIN, 128, 10, FIXED|LEVEL]
8
9 DO
10 OWOUT owio, 0, ["<", ACQBIN|XTRIG, FNDNXT |FWD|BRTEDG]
11 OWOUT owio, 0, [FNDNXT |BKWD|BRTEDG, ">"]
12 IF (rgt edge) THEN
13 area = area + rgt edge - 1ft edge + 1
14 ELSEIF (area) THEN
15 DEBUG "Bagel area: ", DEC area, CR
16 area = 0
17 ENDIF
18 GOSUB Ready
19 OWOUT owio, 0, [DUMPADR, RESULTS + 5]
20 OWIN owio, 2, [1lft edge, rgt edge]
21 LOOP

This is very similar to the previous example, except that the statement order has been changed. We've
buffered the acquire and finds in the loop first, but then look what happens: we start computing with
data that hasn't yet been read. In PBASIC, all variables are initialized to zero; So the first time through
the loop, neither the IF nor the ELSEIF conditions will be true, and that section, between lines 12 and
17, will simply be skipped. 7hAen comes the call to Ready, because right then we want to read some new
data, which we do on lines 19 and 20. Now, when we loop back, we can prime the next exposure right
away, and then get on with our area calculations and, possibly, output. This has the effect of overlapping
the coprocessor’s work with the PBASIC program’s in the most efficient manner possible. Of course, in
any real application, you also have to make sure there’s enough time between encoder pulses to get
everything done! The illustration below shows the timeline of events:

O > O

(0]] (0]

° qh) > O “]'J

o) om Q o

= ke 5 o £ ey

o S Z 8 o = =

| o

PBASIC [>] Compute | Waiting in Ready |Read]<..> Compute & Output | In Ready |
Driver Waiting| Acquire Image | Find Edges| Send] Buffer | Waiting | Acquire Image | Find Edges|
Encoder (PO) [[

In the monitor program section, we looked at bottles — some full, some not-so full, some with caps, and
some without. What we want to do is pass the bottle if all of the following conditions prevail:

1. The liquid level is detected between pixels 111 and 129, and

2. The cap is detected, and it has a size of at least 36 pixels.

3. The top of the cap is no higher than pixel 205 (i.e. it's pushed on all the way).

© Parallax, Inc. « TSL1401-DB (2007.07.07)

Page 42 of 52

Here is the program that sorts this all out and gives a pass/fail grade to each bottle it sees:

lig btm VAR Byte
lig top VAR Byte
cap_btm VAR Byte
cap_ top VAR Byte
lig 1vl VAR Byte
cap siz VAR Byte
i VAR Byte
pix VAR Byte

QO J oy Ul b W

e}

10 OWOUT owio, 1, [SETEXP, 60]
11 OwoUT owio, 0, [SETBIN, 0, 1, FLOAT|LEVEL|S5]

12 DO

13 SERIN 16, 84, [WAIT(" ")]

14 OWOUT owio, 0, ["<", ACQBIN, FNDNXT|FWD|DRKEDG]

15 OWOUT owio, 0, [FNDNXT|FWD|BRTEDG, FNDNXT |BKWD |DRKEDG]
16 OWOUT owio, 0, [FNDNXT |BKWD|BRTEDG, ">"]

17 GOSUB Ready

18 OWOUT owio, 0, [DUMPADR, PIXELS]

19 DEBUG CLS

20 FOR 1 = 0 TO 31

21 OWIN owio, 0, [pix]

22 DEBUG BIN8 pix REV 8

23 IF (i & 7 = 7) THEN DEBUG CR

24 NEXT

25 OWOUT owio, 1, [DUMPADR, RESULTS + 5]

26 OWIN owio, 2, [lig btm, 1lig top, cap_ top, cap btm]

27 cap siz = cap top - cap btm

28 lig 1vl = lig top + lig btm >> 1

29 IF (cap_siz > 35 AND cap top < 206 AND lig lvl > 110 AND lig 1lvl < 130) THEN
30 DEBUG CR, "Pass"

31 ELSE

32 DEBUG CR, "Fail"

33 ENDIF

34 DEBUG ": Cap Size = ", DEC cap siz, " Cap Top = ", DEC cap top
35 DEBUG " Liquid Level = ", DEC lig 1vl

36 LOOP

Unlike the prior program, which relies on a falling edge on P3 to trigger a new scan, this one operates
more in demo mode, in that the trigger comes from tapping the spacebar in the DEBUG window. Here’s a
blow-by-blow description:

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 43 of 52

Line Description

1-8 | Some variables that aren't included in the template are defined here.

10 | Exposure time is set to 60.

11 | Binary acquisition parameters are set: Floating threshold = 0; Hysteresis = 1; Filter =5

12 | Beginning of the main program loop.

13 | Wait for the spacebar.

14-16 Cue up and execute the commands that snap the picture and find the first dark object edges
(liquid meniscus) and the last dark object edges (cap).

17 | Wait for everything that’s been cued up to finish.

18 | Start dumping the binary pixels.

19-24 | Display the binary pixels in four lines, beginning two lines down from the previous output.

25 Start dumping the results of the FNDNXTs. Do you notice the 1 in the OWOUT statement?
This sends the reset that terminates the pixel dumping from line 21.

26 | Read the results of the FNDNXTSs.

27 | Compute the cap size as the difference between its edge locations.

28 | Compute the liquid level as the average of the two edge locations.

29 | Test to make sure all the observed locations and sizes meet the specs.

30, 32 | Print pass/fail.

34, 35 | Print the observed data.

Here is what the output looks like:

#37Debug Terminal #1 - O] =|
Com Puort: B aud R ate: Parity: [iata Bits: Flow Control; @ T< [DIR [RTS

[coms = Joeeoo =l fnee Bl [e El [0] @ R @ DeR @ Cis

0oo011
11000011111111
11111111111111111111111111111111111000000000
ooo00000000111111111111111111111111111111100

40 Cap Top = 3 Licuid Lewvel = 119

0011
11000001111111

7 Size = 11 Cap Top = 184 Liguid Lewel

0011
1111111111111111111111111000011111111111111111111111111111111111
1111111111111111111111111111111110000000000000000000000000000000

Macms...l Pauze | Clear | Cloze | [~ Echo OFF

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 44 of 52

Automatic Exposure

For accurate measurements, the only thing that should ever change is the size or position of what we are
trying to measure. If a subject isn't in perfect focus or isn't lit with perfect evenness, it can seem to grow
and shrink with variations in lighting. And despite our best efforts, lighting isn't always as controlled as
we'd like it to be. So we often need to compensate by adjusting the exposure time to changing light
levels. In cases where a bright object is always within the field of view and/or light intensity changes very
slowly, this is pretty easy.

The image acquisition commands all record the intensity of the brightest pixel. This information can be
used to maintain a constant maximum brightness under varying light conditions. The simplest rule is this:

1. If the maximum brightness is greater than 220, we decrease the exposure time by one.
2. If the maximum brightness is less than 200, we increase the exposure time by one.

3. If the maximum brightness is between 200 and 220, we leave the exposure time alone.

We want to keep the brightness high, for maximum analog resolution, but we don’t want it to saturate.
When brightness levels reach 255, that means the limit of the TSL1401R’s voltage output has been
reached, so there’s no way to tell if the actual brightness might have been higher than that. So we try to
keep the maximum brightness between 200 and 220. Here's a snippet of code that illustrates the rule in
action. It uses the LEDs on the MoBoStamp-pe to indicate the current light level: Red is too high; green is
too low; yellow (red and green together) is just right.

red PIN 13 'Pin for red LED on MoBoStamp-pe.
green PIN 14 'Pin for green LED on MoBoStamp-pe.
max brt VAR Byte 'Maximum brightness read from driver.
exp time VAR Byte 'Current exposure time.
exp time = 30 'Establish initial exposure time,
OWOUT owio, 1, [SETEXP, exp time] ' and set it.
DO 'Do repeatedly:

OWOUT owio, 0, [ACQBIN] ' Acquire an image.

GOSUB Ready ' Wait for not-busy state.

OWOUT owio, 0, [DUMPADR, MAXPIX] ' Read the maximum pixel value.

OWIN owio, 2, [max brt]

IF (max brt < 200) THEN
exp time = exp time + 1 MAX 255
OWOUT owio, 0, [SETEXP, exp time]
LOW green : HIGH red

ELSEIF (max brt > 220) THEN
exp time = exp time - 1 MIN 1
OWOUT owio, 0, [SETEXP, exp time]
LOW red : HIGH green

Is it less than 2007
Yes: Increment exposure time (to 255 max),
and set it.
Indicate as green (too low) .
Is it greater than 220°?
Yes: Decrement exposure time (to 1 min),
and set it.
Indicate as red (too high).

ELSE Is it between these values?
LOW green : LOW red Yes: Indicate as yellow (just right).
ENDIF
LOOP

Keeping the maximum brightness at a constant level is a// this code does, by the way. One thing to note
is that brightness is being measured continuously here. In applications where images are acquired
sporadically, this approach may not work, unless acquisitions are performed between them just to
measure image brightness. If you run this program, you will notice that it responds to changes in
brightness rather slowly. In situations where brightness can vary faster than simple incrementing or
decrementing can compensate for, it may be necessary to adjust by an amount proportional to the

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 45 of 52

difference between the desired and actual levels to get a faster response. For example, the auto-
exposure method used in the TSL1401 Monitor program is:

exp = SE000 / (maxbrt / SFF + 1 * maxbrt) */ exp max 255 min 1

where exp is the exposure time, and maxbrt is the maximum brightness read from location MAXPIX
after each acquisition. This method responds instantly to changes in maximum brightness, which may not
always be a good thing — especially when those changes occur because of changes in the subject and not
changes in the lighting. But this just illustrates that there are many possible approaches and that you
have to pick one appropriate to your individual application.

PBASIC Code Template

Here is the code template, TSL1401_template.bpe, which defines all the constants and subroutines
used by the examples above. You can also download it from the Parallax website to use with these
examples and with your own programs.

File...... ts11401 template.bpe

Purpose... Code template for the TSL1401-DB driver firmware.
Author.... Parallax, Inc.

E-mail.... support@parallax.com

Started... 20 July 2007

Updated. ..

{SSTAMP BS2pe}
{SPBASIC 2.5}

' [Program Description]J--—--------------"—--"-"—"-"—"—"—\—"—\—"—~—"—~—\—~—~\—"—~—~—~—\—\—~\—\—~———

This is a blank template used for interacting with the TSL1401 driver
firmware in the MoBoStamp-pe's AVR coprocessor.

Vo [I/0 Definitions]--————————=———————— - ——
owio PIN 6 'Pin for OWIN and OWOUT to AVR coprocessor.

' [Constants]---——7-——--—-—-——"-———"—"—"——"——"——"——"——"———————————————————————
T

Commands

SETLED CON SEB 'Set LED strobe and brightness/time from next byte.

'Flag to OR to brightness/time (0 - 127) value.

TIME CON $80 'Set strobe: value (0 - 127) is 0 - 3.4mS at 100% on.
INTEN CON 500 'Set intensity: value (0 - 127) is 0 - 49.6% on.
SETBIN CON SEC 'Set threshold, hysteresis, and filter (3 bytes).

'Filter flags, ORed with filter value, NOT with SETBIN.

FLOAT CON $80 'Threshold is floating per filter value (0 - 7).
FIXED CON $00 'Threshold is fixed.

WINDOW CON $40 'Threshold is a window (outside of hysteresis band) .
LEVEL CON $S00 'Threshold is a level with hysteresis.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 46 of 52

SETEXP CON SEE 'Set exposure to byte (1 - 255) following: 0.27 - 68mS.

ACQGRAY CON SAOQ 'Acquire and dump a grayscale image.
ACQBIN CON SA4 'Acquire a binary image.

ACQAND CON SAl 'Acquire binary image ANDed w/ previous.
ACQOR CON SA2 'Acquire binary image ORed w/ previous.
ACQXOR CON SA3 'Acquire binary image XORed w/ previous.
ACQANDNOT CON SAS 'Acquire binary image ANDed w/ NOT prev.
ACQORNOT CON SA6 'Acquire binary image ORed w/ NOT prev.
ACQXORNOT CON SA7 'Acquire binary image XORed w/ NOT prev.
ACQDIFF CON SA3 'Idiom for ACQXOR.

ACQSAME CON SA7 'ITdiom for ACQXORNOT.

XTRIG CON $08 'External trigger flag, ORed to ACQ commands.
CNTNEW CON $C8 'Count pixels/edges between new bounds.
CNTNXT CON SCO 'Count pixels/edges between current bounds.
FNDNEW CON SF8 'Find first pixel/edge between new bounds.
FNDNXT CON SFO 'Find first pixel/edge between current bounds.

'Modifiers, ORed to CNTNEW, CNTNXT, FNDNEW, and FNDNXT.

NXT CON S00 'Continue from where last CNT or FND left off.
BKWD CON $04 'Search backward.
FWD CON S00 'Search forward.
DRKPIX CON $00 'Target is a dark pixel.
BRTPIX CON $02 'Target is a bright pixel.
DRKEDG CON $03 'Target is a bright-to-dark edge.
BRTEDG CON S01 'Target is a dark-to-bright edge.
DUMPADR CON SDA 'Dump data, beginning at addr, and until reset.

'Address constants for single byte arg following DUMPADR.

PIXELS CON S00 'Beginning of binary pixel buffer (32 bytes).
RESULTS CON $20 'Beginning of results buffer.
MINPIX CON 520 'Value of darkest pixel (0 - 255).
MINLOC CON $21 'Location of darkest pixel (0 - 127).
MAXPIX CON $22 'Value of brightest pixel (0 - 255).
MAXLOC CON $23 'Location of brightest pixel (0 - 127).
AVGPIX CON $24 'Average pixel value (0 - 255).
DUMPID CON SDD 'Dump the firmware ID (returns 3 bytes).
DUMPFLAGS CON SDF 'Dump error flags (returns 1 byte).

'Bit positions in returned byte.

BADCMD CON $80 'Unrecognized command.
CANTBUF CON $40 'Attempt to buffer unbufferable command.
CMDOVF CON $20 'Command buffer overflow.
DATOVF CON $10 'Result data buffer overflow.
' [Variables J----------—-—"—"-"=-"——-"—"—"—"—"—"—"—"—\—"—~\—"—~—"—~—\—~—~\———————————————————
flags VAR Byte
busy VAR Bit
I oosos [Inltlalizatlien |=—=—ss=—=mc=ossc=ososocooososoosooosoosososoooss=n=0
PAUSE 10 'Wait for AVR to finish reset.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 47 of 52

V'oe——— [Program Code]
' Your program code goes here.

END

I coooo [Subroutines]

' [Ready]
' Wait for the driver to become not busy.

Ready:
DO
OWIN owio, 4, [busy] 'Read busy bit.
LOOP WHILE busy 'Keep checking until it goes low.
RETURN

' [GetError J-—-—----—--—-—-—————"————"—"—"—"—"—"—\ "~~~ —————
' Read the error flags from the driver.

GetError:

OWOUT owio, 0, [DUMPFLAGS] 'Read the error flags.
OWIN owio, 0, [flags]
IF (flags = S$FF) THEN 'Tf $FF, driver is waiting for a reset.

OWOUT owio, 1, [DUMPFLAGS] 'So reset and try again.
OWIN owio, 0, [flags]

ENDIF

RETURN

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 48 of 52

Command Summary

L. Buf- 2 . 3 Re-
Name Val. Description Fer' Busy Modifiers Args sults’
DUMPID ¢pp | Dumps two-letter ID and No | No | None None | O
version byte.
DUMPFLAGS $DF | Dumps single error byte. No No None None 0
DUMPADR $DA | Dumps memory beginning at No No | None Addr 0
Addr, until reset.
Set exposure time to
SETEXP $EE ExpTime. Yes No None Exp 0
. I Thid,
SETBIN $EC ESEat:EZ:CqU'S'tlon Yes No None Hyst, 0
) Mode
Set LED brightness 5
SETLED $EB | (INTEN | Value) or strobe Yes No i';‘;EE"(gg;’Q Value 0
time (TIME | Value).
ACQGRAY $AO Acquire binary image; dump No
gray values.
ACQBIN $A4 | Acquire binary image.
ACQAND $A1 Acqwre and _AND new binary
image to old image.
Acquire and OR new binary
ACQOR $A2 image to old image.
ACQXOR $A3 Acquire and XOR new binary | Yes Yes | XTRIG($08) None 5
ACQDIFF image to old image.

Acquire and AND new binary
image to NOT old image.
Acquire and OR new binary
image to NOT old image.
Acquire and XOR new binary

ACQNOTAND $A5

ACQNOTOR $A6
ACQXORNOT

ACQSAME $A7 image to NOT old image.

Count pixels/edges between Begin,
CNTNEW $C8 | new limits. FWD ($00)° | End

Count pixels/edges between BKWD ($04)°
CNTNXT $CO | Lrrent limits. ves | yes | DRKPIX($00) None ,
FNDNEW $F8 Find pixels/edges between BRTPIX ($02) Begin,

new limits. DRKEDG ($00) | End
ENDNOCT $FO Find pixels/edges between BRTEDG ($01) None

current limits.
<" $3C | Begin buffering commands. No No None None 0
w End buffering, execute buffer, v 0-

> $3E | then enter immediate mode. ves Yes | None None 16®
Notes:

1. The Buffer column indicates whether the command can be buffered.

2. The Busy column indicates whether the busy bit needs to be read as zero after the command is sent and before further
interaction with the firmware can take place. (Applies only to immediate mode.)

3. Modifiers are ORed to the command byte, except where noted. Modifiers with a value of zero ($00) may be omitted;
however including them can make a program more readable.

The Results column indicates how many bytes are appended by the command to the results buffer.
INTEN and TIME modify the Value parameter, not the command itself.

FWD and BKWD apply to FNDNEW and FNDNXT only, not to the count routines.

The “>" command can only be buffered. It cannot be used in immediate mode.

© N oo

The number of results produced by a buffered sequence depends on the commands in the buffer and will be the sum of
what the individual commands produce.

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 49 of 52

Lighting

No discussion of machine vision would be complete without an entire chapter on lighting. The fact is that
any vision application will succeed or fail based on how well you are able to control the lighting. If you try
to use ambient lighting, you will almost surely fail in your endeavor. It really is that simple.

Fortunately, there are ample resources on the internet that cover this important topic. A few of the better
ones can be found at these URLs:

e Melles Griot: http://www.mellesgriot.com/products/machinevision/lif 1.htm

e Advanced Illumination:
http://advill.com/uploads/downloads/A%?20Practical%20Guide%20to%20Machine%?20Vision%20

Lighting.pdf
e Edmund Scientific: http://www.edmundoptics.com/techSupport/DisplayArticle.cfm?articleid=264

o Vision & Sensors Magazine:
http://www.visionsensorsmag.com/CDA/Articles/Cover Story/BNP_GUID 9-5-
2006 A 10000000000000097315

Schematic

+5V Vdd
vdd
U1
78 ;gg — . ISL1401RLF
|
J1 1 sl 8
2 CLK Vssi
3 AO Vss6
R2 4 vdd 5
330R — o |
1 0.1yF —
- Vdd
» C3
oV A) o og l) + 10pF
O O @)
! 14 D@
74LVC1G14

J2

© Parallax, Inc. + TSL1401-DB (2007.07.07) Page 50 of 52

Index

N 39, 48
N 39, 48
A

ACQAND.....oummmmmminns 30, 33, 46, 48
ACQANDNOT ..ovvvvvrnmnrsrsssrsisisisisisiss. 30, 46

ACQBIN .. 24, 30, 31, 33, 37, 38, 39, 40, 41, 42,
43, 45, 46, 48

ACQGRAY 26, 30, 31, 33, 39, 46, 48
ACQOR.....iiiieririerrrr e e 30, 33, 46, 48
ACQORNOT ...ovvvererrrnss e serereesnnsssseeeeens 30, 46
FAY0) (@ 2 P 30, 46, 48
ACQXORNOT .cvveivrernnrerrrnnrerennneneenns 30, 46, 48
AO..... 3,56
Automatic eXpoSsUrecooveveiieriiireiniennnennns 44
AVGPIX ... 27, 33, 46
B

BADCMD.........ooovniiiiiiiircreni e 26, 47
BASIC Stamp.............. 1, 3,5, 11, 20, 25, 30, 31
Binary acquisition coefficientscccevvvunnnn. 27

Binary image ..20, 21, 24, 27, 30, 31, 33, 36, 46,
48

BKWD........... 8,9, 36, 38, 39, 40, 42, 43, 46, 48
Board of Education..........ccuvveeiiniiinrnrennnnnnenen, 5
BRTEDG......... 34, 35, 36, 37, 40, 42, 43, 46, 48
BRTPIX..........ccvvviieieeeeeeeeenniaen 34, 36, 46, 48
Buffered mode......ccccevviviiiiivniiiinn e, 24
Buffering commandsccceeeviiiinieniiennnnnnn, 38
Cc

CANTBUF.............c e, 26, 47
CLK ... 3,6,9
CMDOVFccoo e 26, 47
CNTNEW...........ccceeeee, 33, 34, 35, 36, 46, 48
CNTNXT......coovivreerennnnnn 33, 34, 35, 36, 46, 48
ContinuoUS IMAgiNg ...oveveiiieiierieere e eens 3
Cosine effeCt....ccuiiiieeriiiiiiee e 16
Counting pixels and edges.........ccceeveeeeeereeennn. 33
D

DATOVFcooviiiiiieeeeeerenne e 26, 47
DB-EXpPandercceeeeiireierenniiiiinenseeeenenns 1,3,5
Driver firmware.......ccoovviveeereniicin e 13
DRKEDG 34, 35, 36, 37, 38, 39, 43, 46, 48
DRKPIXcccovvvviiiiiinieeeens 34, 35, 36, 46, 48

DUMPADR25, 26, 27, 31, 34, 35, 37, 38, 39,
40, 42, 43, 45, 46, 48
DUMPFLAGS...........c...ccoooonn.. 26, 27, 39, 47, 48

© Parallax, Inc. « TSL1401-DB (2007.07.07)

DUMPIDcoooviiiiiiiiiiii, 26, 39, 47, 48
E

Exposure time.. 3, 4, 6, 9, 11, 14, 27, 31, 33, 44,
45, 48

F

Field of VIieWcccvvviiiiiiiieeenns 1, 3,8, 40,41, 44

Filter covvveeie e, 28, 29, 43, 46

FIXED.........ccovvvvniiniinnnnns 28, 29, 31, 40, 42, 46

FLOAT ... 29, 43, 46

FNDNEW 34, 35, 36, 37, 38, 39, 46, 48

FNDNXT.. 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
46, 48

FOCUS e e 3,15

FWD..7, 8, 9, 10, 36, 37, 38, 39, 40, 42, 43, 46,
48

H

Hysteresis.. 15, 17, 19, 27, 28, 29, 31, 41, 43, 46
I
Image acquisition... 5, 16, 20, 25, 30, 31, 34, 44

Image analysis.............. 7,15, 16, 17, 20, 25, 31
Immediate modecoovvvviviiniiiinnnnes 24, 39, 48
Integration time........cccccevnnes See Exposure time
Interfaceocvvvveiiiiii s 3, 27
L

[TP 1, 15, 29, 44, 45, 46, 48
LensS. ..o 1, 2,3, 15,16, 21, 31, 32
Lighting.........cevvvvnnnen 12, 14, 21, 29, 44, 45, 49
LOQAAVR.EXEcoovviveirrrrnninnn e erernnnn s 13
Locating pixels and edges............cccoeeeeeeeeennn. 35
M

MAXLOCoooviiieiiecceeren e 33, 46
MAXPIX........cooviriiininneeerrrnnnn e 33, 45, 46
MEMOKY MAP .eveniiieriiir e e e 25
MINLOC..........oeiii e 33, 46
MINPIX ..o 33, 46
MOBOPIOP...cceiiii i, 1

MoBoStamp-pe 1, 3, 5, 13, 16, 24, 30, 44, 45, 46
o

One-shot imagingcccovvvevviiiiiciniencccen, 4, 27

P

PBASIC.....6, 7, 8, 13, 15, 17, 20, 24, 25, 26, 30,
31, 35, 41, 42, 45

Pixel droopcevvrriiiiiiieeerrrncss e 31

Page 51 of 52

PIXELS ... 33

Pseudo-analog pixel acquisition..........ccccvvuuenn. 11

R

Ready/busy polling.......ccceevvieiiieiiiiininniecnennnnn, 24

Reset . 25, 26, 27, 30, 34, 35, 36, 38, 39, 41, 43,
46, 47, 48

RESULTS 25, 27, 34, 35, 37, 38, 39, 40, 41, 42,
43, 46

)

SCheMaALiC.curiviiiiiiiieiie e 49

SETBIN ... 28, 29, 31, 37, 38, 39, 40, 42, 43, 46,
48

SETEXP ... 27, 31, 37, 38, 39, 40, 42, 43, 45, 46,
48

© Parallax, Inc. « TSL1401-DB (2007.07.07)

StrobeLED-DBMccovvviiiiiiininieninniiniinns 14, 29
T

TEXTUrE oo 18, 19, 29
Threshold...5, 11, 15, 17, 18, 19, 21, 27, 28, 29,
31, 41, 43, 46

TSL1401_template.bpe.............cccoueeeeee. 45
TSL1401-DB Monitor Program............ 13, 28, 33
TSL1401_monitor.exe............cceeevevnvrinnnnens 13
TSL1401DBO1.hex.......ccccooovvvviiiiiinieeeeenn, 13
TSL1401R........... 1,2,3,8,9, 11, 16, 24, 31, 44
w

Window thresholding........cccccooeevviiiiennnnn. 17, 28
X

XTRIGcovviviiieieee e 30, 31, 42, 46, 48

Page 52 of 52

